CBSE BOARD X, asked by lakshy2266, 7 days ago

Solve by Substitution method 5x + 2y = 23, 3x - 5y = -11​

Answers

Answered by mars603535
2

Answer:

Break down the problem into these 2 equations.

5 x + 2 y=23

5X + 2 y = 3 x-5y

Solve the 1st equation:

5X + 2 y =23

x=23 - 2 y

-----------

2

Solve the 2nd equation:

5 x + 2 y= 3 x - 5 y.

7y

x= - ____

2

Collect all solutions.

x=23-2y 7y

____,-___

5. 2

Answered by DeeznutzUwU
9

       \underline{\bold{Answer:}}

       x = 3, y = 4

       \underline{\bold{Explaination:}}

       \text{The two equations are: }

       \boxed{5x + 2y = 23}\text{------(i)}

       \boxed{3x - 5y = -11}\text{------(ii)}

       \text{In (i)}

       \boxed{5x + 2y = 23}

       \text{Transposing }2y \text{ to R.H.S}

\implies \boxed{5x = 23 - 2y}

       \text{Transposing }5 \text{ to R.H.S}

\implies \boxed{x = \frac{23 - 2y}{5}}

       \text{Substituting the value of }x \text{ in (ii)}

\implies \boxed{3(\frac{23 - 2y}{5})  - 5y = -11}

       \text{Simplifying the equation}

\implies \boxed{\frac{69 - 6y}{5}  - 5y = -11}

       \text{Simplifying the equation}

\implies \boxed{\frac{69 - 6y-25y}{5} = -11}

       \text{Simplifying the equation}

\implies \boxed{\frac{69 - 31y}{5} = -11}

       \text{Transposing }5 \text{ to R.H.S}

\implies \boxed{69 - 31y= (5)(-11)}

       \text{Simplifying the equation}

\implies \boxed{69 - 31y= -55}

       \text{Transposing }69 \text{ to R.H.S and simplifying the equation}

\implies \boxed{ - 31y= -124}

       \text{Transposing }31 \text{ to R.H.S and simplifying the equation}

\implies \boxed{y = 4}

       \text{Substituting the value of }y \text{ in (i)}

\implies \boxed{5x + 2(4) = 23}

       \text{Simplifying the equation}

\implies \boxed{5x + 8 = 23}

       \text{Transposing }8 \text{ to R.H.S and simplifying the equation}

\implies \boxed{5x = 15}

       \text{Transposing }5 \text{ to R.H.S and simplifying the equation}

\implies \boxed{x = 3}

Similar questions