Math, asked by Dharmansha, 3 months ago

solve by substitution method
6p+3q=6
2p+4q=5​

Answers

Answered by sunita107
1

Answer:

if it is helpful to u then mark me as brainliest

Attachments:
Answered by varadad25
4

Answer:

The solution of the given simultaneous equations is

\displaystyle{\boxed{\red{\sf\:(\:p\,,q\:)\:=\:\left(\:\dfrac{1}{2}\:,\:1\:\right)\:}}}

Step-by-step-explanation:

The given simultaneous equations are

6p + 3q = 6 - - - ( 1 ) &

2p + 4q = 5 - - - ( 2 )

By dividing equation ( 1 ) by 3, we get,

6p + 3q = 6 - - - ( 1 )

⇒ 2p + q = 2

q = 2 - 2p

By substituting value of q in equation ( 2 ), we get,

2p + 4q = 5 - - - ( 2 )

⇒ 2p + 4 * ( 2 - 2p ) = 5

⇒ 2p + 8 - 8p = 5

⇒ 2p - 8p = 5 - 8

⇒ - 6p = - 3

⇒ 6p = 3

\displaystyle{\implies\sf\:p\:=\:\dfrac{3}{6}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:p\:=\:\dfrac{1}{2}}}}}

Now, by using the value of p,

q = 2 - 2p

\displaystyle{\implies\sf\:q\:=\:2\:(\:1\:-\:p\:)}

\displaystyle{\implies\sf\:q\:=\:2\:\left(\:1\:-\:\dfrac{1}{2}\:\right)}

\displaystyle{\implies\sf\:q\:=\:\cancel{2}\:\times\:\dfrac{1}{\cancel{2}}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:q\:=\:1\:}}}}

∴ The solution of the given simultaneous equations is

\displaystyle{\boxed{\red{\sf\:(\:p\,,q\:)\:=\:\left(\:\dfrac{1}{2}\:,\:1\:\right)\:}}}

Similar questions