Math, asked by sahidikbal20, 1 month ago

solve by substitution method
a) 2x+3y=7 b) 2x+y=28

Answers

Answered by kinzal
5

Answer :-

  • X =  \sf \frac{77}{4} \: \: and\: \:  Y = - \frac{21}{2}\\

Explanation :-

Substitute method :-

  • 2x + 3y = 7 _______(1)
  • 2x + y = 28 _______(2)

  • Now make substitute equation in eq. (2)
  • 2x + y = 28 _______(2)
  • 2x = 28 - y
  •  \sf x = \frac{28 - y}{2}\\ ______(3)

Now, put the value of eq.(3) in eq. (1) then,

  • 2x + 3y = 7 _______(1)

  •  \sf 2 \bigg( \frac{28 - y }{2} \bigg) + 3y = 7 \\

  •  \sf \cancel{2} \bigg( \frac{28 - y }{\cancel{2}} \bigg) + 3y = 7\\

  •  \sf 28 - y + 3y = 7 \\

  •  \sf 28 + 2y = 7\\

  •  \sf 2y = 7 - 28 \\

  •  \sf 2y = - 21\\

  •  \sf \red{ y = - \frac {21}{2} }\\

Now, put the value of y in eq.(3)

  •  \sf x = \frac{28 - y}{2} \\

  •  \sf x = \frac{28 - \bigg(-\frac{21}{2}\bigg)}{2} \\

  •  \sf x = \frac{28 + \bigg( \frac{21}{2}\bigg)}{2}\\

  •  \sf x = \frac{ \frac{56+21}{2}}{2} \\

  •  \sf x = \frac{ \frac{77}{2}}{2}\\

  •  \sf x = \red{ \frac {77}{4} } \\

Hence,  (x,y) = \bigg(\frac{77}{4} , -\frac{21}{2} \bigg) \\

I hope it helps you ❤️✔️

Similar questions