Solve by substitution method:- x/a - y/b=0 and ax+by=a^2+b^2
Answers
Answered by
0
Answer:
x=a,y=b
Step-by-step explanation:
$$\begin{lgathered}Given \: pair \: of \: Linear \\equations:\end{lgathered}$$
$$\begin{lgathered}\frac{x}{a}-\frac{y}{b}=0\\\implies \frac{bx-ay}{ab}=0\\\implies bx-ay = 0 \:---(1)\end{lgathered}$$
$$and\: ax+by=a^{2}+b^{2}\:---(2)$$
/* multiply equation (1) by b, equation (2) by a, we get
$$b^{2}x-aby = 0 \:---(3)$$
$$a^{2}x+aby=a(a^{2}+b^{2})\:---(4)$$
/* Add equations (3) and (4),we get
$$x(a^{2}+b^{2})=a(a^{2}+b^{2})$$
$$\implies x = \frac{a(a^{2}+b^{2})}{(a^{2}+b^{2})}$$
$$\implies x = a$$
$$\begin{lgathered}Put \: x = a \: in \: equation \\(1),\: we \: get\end{lgathered}$$
$$ab-ay = 0$$
$$\implies b-y = 0$$
$$\implies y = b$$
Therefore,.
$$x = a, \: y = b$$
•••♪
Similar questions
Math,
4 months ago
Math,
4 months ago
Political Science,
8 months ago
Math,
1 year ago
Geography,
1 year ago