solve by the First Principle
sin3x step.by step using the increment in y and increment in x
Answers
Let y=\sin 3xy=sin3x
Let \delta yδy be an increment in y, corresponding to an increment \delta xδx in x.
Then, y+\delta y=\sin 3(x+\delta x)y+δy=sin3(x+δx)
⇒ \delta y=\sin (3x+3\delta x)-\sin 3xδy=sin(3x+3δx)−sin3x
⇒\dfrac{\delta y}{\delta x} =\dfrac{\sin (3x+3\delta x)-\sin 3x}{\delta x}
δx
δy
=
δx
sin(3x+3δx)−sin3x
⇒ \frac{dy}{dx} = \lim_{x \to 0} \dfrac{\delta y}{\delta x}
dx
dy
=lim
x→0
δx
δy
= \lim_{\delta x \to 0} \dfrac{\sin (3x+3\delta x)-\sin 3x}{\delta x}=lim
δx→0
δx
sin(3x+3δx)−sin3x
= \lim_{\delta x \to 0} \dfrac{2\cos (3x+\delta x)\sin \delta x}{\delta x}=lim
δx→0
δx
2cos(3x+δx)sinδx
=3 \lim_{\delta x \to 0} \dfrac{2\cos (3x+\delta x)\sin \delta x}{\delta x}=3lim
δx→0
δx
2cos(3x+δx)sinδx
=3\cos 3x3cos3x
Hence, the derivative of sin3x using first principle is3\cos 3x.3cos3x.