Math, asked by subhivs14, 6 months ago

Solve by using Cramer’s rule

3x-y+2z=8 ; x+y+z=2 ; 2x+y-z=-1​

Answers

Answered by hotelcalifornia
2

3x-y+2z=8 ; x+y+z=2 ; 2x+y-z=-1  the value of x,y,z is1,-1,2.

Step-by-step explanation:

Given:

3x-y+2z=8 ; x+y+z=2 ; 2x+y-z=-1

To find:

x,y,z value is using Cramers' rule

Solution:

Write the system as a matrix equation AX=b

where,

A=\left[\begin{array}{ccc}3&-1&2\\1&1&1\\2&1&-1\end{array}\right]

X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]

b=\left[\begin{array}{ccc}8\\2\\-1\end{array}\right]

Write down the main matrix and find its determinant,

|A|=\left[\begin{array}{ccc}3&-1&2\\1&1&1\\2&1&-1\end{array}\right]

|A|=8(-1-1)+1(-2+1)+2(2+1)

|A|=-16-1+6

|A|=-11=Δ

Replace the 1st column of the main matrix with the solution vector b and its determinant,

Δ_{1}=\left[\begin{array}{ccc}8&-1&2\\2&1&1\\-1&1&-1\end{array}\right]

   =8(-1-1)+1(2-1)+2(2+1)

   =-16-1+6

Δ_{1} =-11

Replace the 2nd column of the main matrix with the solution vector b and its determinant,

Δ_{2}=\left[\begin{array}{ccc}3&8&2\\1&2&1\\2&-1&-1\end{array}\right]

   =3(-2+1)-8(-1-2)+2(-1-4)

   =-3+24-10

Δ_{2} =11

Replace the 3rd column of the main matrix with the solution vector b and its determinant,

Δ_{3} =\left[\begin{array}{ccc}3&-1&8\\1&1&2\\2&1&-1\end{array}\right]

   =3(-1-2)+1(-1-4)+8(1-2)

   =-9-5-8

Δ_{3}=-22

Now,

x= Δ_{1}/ Δ

x=\frac{-11}{-11}

x=1

y= Δ_{2}

y=\frac{11}{-11}

y=-1

z=Δ_{3}

z=\frac{-22}{-11}

z=2

So the final value of x,y,z is1, -1, 2.

   

Answered by dharunprasaath164
0

Answer:

bjknb

Step-by-step explanation:

Similar questions