Math, asked by Manasjain1093, 9 hours ago

Solve by using Cramers rule. 3x + 2y = 1 , x - y = 2
.

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations is

\rm :\longmapsto\:3x + 2y = 1 -  -  - (1)

and

\rm :\longmapsto\:x  - y = 2-  -  - (2)

The matrix form of the above system of equations is

\rm :\longmapsto\:\bigg[ \begin{matrix}3&2 \\ 1& - 1 \end{matrix} \bigg]\begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered} =  \begin{gathered}\sf \left[\begin{array}{c}1\\2\end{array}\right]\end{gathered}

where,

\rm :\longmapsto\:A = \bigg[ \begin{matrix}3&2 \\ 1& - 1 \end{matrix} \bigg]

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}1\\2\end{array}\right]\end{gathered}

Now, Consider

\rm :\longmapsto\: |A|  = \begin{array}{|cc|}\sf 3 &\sf 2  \\ \sf 1 &\sf  - 1 \\\end{array} =  - 3 - 2 =  - 5 \ne \: 0

It implies, System of equations is consistent having unique solution.

So, Consider

\rm :\longmapsto\: D_1  = \begin{array}{|cc|}\sf 1 &\sf  2  \\ \sf 2 &\sf  - 1 \\\end{array} =  - 1 - 4 =  - 5

\rm :\longmapsto\: D_2  = \begin{array}{|cc|}\sf 3 &\sf  1  \\ \sf 1 &\sf  2 \\\end{array} =  6 - 1 =  5

So,

\bf\implies \:x = \dfrac{D_1}{ |A| }  = \dfrac{ - 5}{ - 5} = 1

and

\bf\implies \:y = \dfrac{D_2}{ |A| }  = \dfrac{ 5}{ - 5} =  - 1

VERIFICATION

Consider first equation

\rm :\longmapsto\:3x + 2y = 1

On substituting the value of x and y, we get

\rm :\longmapsto\:3(1)+ 2( - 1) = 1

\rm :\longmapsto\:3 - 2 = 1

\rm :\longmapsto\:1 = 1

Hence, Verified

Similar questions