Math, asked by praveen12334, 1 year ago

solve by using formula method
x^2-2ax+(a+1)(a-1)=0​

Answers

Answered by amitkumar44481
6

 \bold \red \star \:  \large \underline{Given:-} \begin{cases} \sf{ \underline{Our \:  \:  equation :-}}  \\  \sf{ {x}^{2}  - 2ax + (a + 1)(a - 1) = 0.} \end{cases}

 \\  \\  \bold \red \star \:  \large \underline{Solution:-}

{x}^{2}  - 2ax + (a + 1)(a - 1) = 0. \\ \\ or   \:  \:  \:  \:  \: {x}^{2}  - 2ax + ( {a}^{2}  -  {1}^{2} ) = 0. \\ \\

Let's Comparing with General Equation:-

a {x}^{2}  + bx + c = 0.  \\ where \: as, \:  \\  \\  \:  \:  \:  \:    \:  \:  \:  \:  \:  a = 1. \:  \:  \: \:  \:  b =  - 2a .\:  \: c = ( {a}^{2}  - 1). \\  \\

 \rightarrow D=  {b}^{2}  - 4ac .\\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  ={ ( - 2a) }^{2}  - 4(1)( {a}^{2}  - 1). \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \cancel{ 4 {a}^{2}}  - \cancel {4 {a}^{2} }  +  4. \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4.

Now,

Let's Find out The value of x.

x =  \frac{ - b ± \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ \:  \:  \:  \:   =  \frac{2a ± \sqrt{4}  }{2}  \\  \\   \:  \:  \:  \: =  \frac{2a±2 }{2}  \\  \\  \:  \:  \:  \:  =   \frac{ \cancel{2}(a±1) }{ \cancel2}  \\  \\   \:  \:  \:  \: = a±1.\\

________________________________________

So,

We have two value of a.

 a + 1 = 0.  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \: a - 1 = 0.\\  \\ a =  - 1. \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: \:  \:  a = 1.

Similar questions