Solve By using formula methos
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given that,
Let p ( x ) = 6√3x² + 7x - √3 = 0
Comparing p ( x ) with ax² + bx + c = 0,
We have a = 6√3 , b = 7 and c = - √3
∴ x = - b ± √ b² - 4ac /2a
= - 7 ± √ ( 7 )² - 4 ( 6√3 ) ( - √3 ) / 2 ( 6√3 )
= - 7 ± √ 49 + 72 / 12√3
= - 7 ± √ 121 / 12√3
= - 7 ± 11 / 12√3
= ( - 7 - 11 / 12√3 ) or ( - 7 + 11 / 12√3 )
= ( - 18 / 12√3 ) or ( 4 / 12√3 )
= ( - 3 / 2√3 ) or ( 1 / 3√3 )
= ( - 3√3 / 2 ) or ( √3 / 3 ) is the answer. (∵ Rationalising the denominator )
Similar questions