CBSE BOARD X, asked by Anonymous, 10 months ago

Solve by using formula:- x = -b ± √b²-4ac/ 2a complete solution m^2-3m-10=0

Answers

Answered by ItzAditt007
2

AnswEr:-

Your Answer Is 5 and -2.

ExplanaTion:-

Given Polynomial:-

 \\ \tt\longrightarrow {m}^{2}  - 3m - 10 = 0.  \\

To Find:-

  • The values of m by using quadratic formula.

 \\ \tt i.e.  \\  \\ \tt\longrightarrow  x = \frac{  -b \pm \sqrt{ {b}^{2} }  - 4ac }{2a}  .\\

Where,

  • a = Coefficient of x².

  • b = Coefficient of x.

  • c = Constant term.

  • x = Veriable of the polynomial.

So Here,

  • a = 1.

  • b = -3.

  • c = -10.

  • x = m.

By putting the values in above formula we get:-

 \\  \tt\mapsto x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} . \\  \\ \tt\mapsto m =  \frac{ - ( - 3) \pm \sqrt{ { (- 3)}^{2} - 4(1)( - 10) } }{2(1)}. \\  \\  \tt\mapsto m =  \frac{3 \pm \sqrt{9 - ( - 40)} }{2}.  \\  \\ \tt\mapsto m =  \frac{3 \pm \sqrt{9 + 40} }{2} . \\  \\ \tt\mapsto m =  \frac{3 \pm \sqrt{49} }{2} . \\  \\ \tt\mapsto m =  \frac{3 \pm7}{2} . \\  \\ \tt\mapsto m =  \frac{3 + 7}{2} \:  \:  \:  \: or \:  \:  \:  \: m =  \frac{3 - 7}{2}  . \\  \\ \tt\mapsto m =  \cancel \frac{10}{2}  \:  \:  \:  \: or \:  \:  \:  \: m =  - \cancel\frac{4}{2}.  \\  \\ \tt\mapsto{ \underline{ \underline{ m = 5 \:  \:  \:  \: or \:  \:  \:  \: m =  - 2.}}}\\

\bf\therefore The Required Values Of m are 5 and -2.

Answered by Choudhury786
1

Answer:

Here is the

Answer of

Your question

.......................

Attachments:
Similar questions