Math, asked by Secretstuudious, 3 months ago

solve by using law of exponenrs​

Attachments:

Answers

Answered by Sirat4
1

Answer:

(1/2)⁻² ÷ (1/2)³

= (1/2)⁻²⁻³

= (1/2)⁻⁵

= 2⁵

= 32

[(1/3)²]³  x (1/3)⁻⁶

= (1/3)⁶ x (1/3)⁻⁶

= (1/3)⁶⁻⁶

= (1/3)°

= 1

Answered by aviralkachhal007
0

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\huge{\boxed{\bullet{\color{coral}{\mathcal{ANSWER}}}\bullet}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:

✯ Laws of Exponents :-

  • {a}^{m} × {a}^{n} = {a}^{m+n}

  • \frac{{a}^{m}}{{a}^{n}} = {a}^{m-n}

  •  ({{a}^{m}})^{n} = {a}^{mn}

  • {a}^{0} = 1

  • {a}^{-m} = \frac{1}{{a}^{m}}

Now, Let's solve the questions using these laws of Exponents :-

Q1. ({\frac{1}{2}})^{-2} ÷ ({\frac{1}{2}})^{3}

➙ Now, using \frac{{a}^{m}}{{a}^{n}} = {a}^{m-n}

({\frac{1}{2}})^{-2-3}

({\frac{1}{2}})^{-5}

➙ Now using, {a}^{-m} = \frac{1}{{a}^{m}}

{(2)}^{5}

➙ 32

Q2. [{( { \frac{1}{3} })^{2}}]^{3} × {\frac{1}{3}}^{-6}

➙ Now using,  ({{a}^{m}})^{n} = {a}^{mn}

({\frac{1}{3}})^{6} × ({\frac{1}{3}})^{-6}

➙ Now using, {a}^{m} × {a}^{n} = {a}^{m+n}

({\frac{1}{3}})^{6+(-6)}

({\frac{1}{3}})^{0}

➙ Now using, {a}^{0} = 1

➙ 1

Similar questions