Math, asked by balakrishnaky21, 5 hours ago

Solve by using quadratic formula: (a)x - (1/x) = 5 (b) 1/x 1/(x 4) = 1/2 (c) 1/x 1/(x - 6) = 1/3​

Answers

Answered by ludiyasavana
0

Answer:

Step-by-step explanation:

Attachments:
Answered by hukam0685
0

Step-by-step explanation:

Given:

a)x -  \frac{1}{x}  = 5 \\

b) \frac{1}{x}  -  \frac{1}{x  + 4}  =  \frac{1}{2}  \\

c) \frac{1}{x}   +   \frac{1}{x - 6}  =  \frac{1}{3}  \\

To find: Solve by using quadratic formula.

Solution:

Tip:

Quadratic formula

\boxed{\bold{\pink{x_{1,2} =  \frac{ - b ±  \sqrt{ {b}^{2}  - 4ac} }{2a}}}} \\

a)x -  \frac{1}{x}  = 5 \\

Step 1: Take LCM in LHS and cross multiply

 \frac{ {x}^{2}  - 1}{x}  = 5 \\

or

 {x}^{2}  - 1 = 5x \\

or

 {x}^{2}  - 5x - 1 = 0 \\

Step 2: Apply Quadratic formula

x_{1,2} =  \frac{ 5±  \sqrt{ {( - 5)}^{2}  - 4(1)( - 1)} }{2}  \\

x_{1,2} =  \frac{5 ±  \sqrt{29} }{2}  \\

or

\bold{x_1=  \frac{5 +  \sqrt{29} }{2} }  \\ \\\bold{ x_2 =  \frac{5  -  \sqrt{29} }{2}  }\\

b) \frac{1}{x}  -  \frac{1}{x  + 4}  =  \frac{1}{2}  \\

Step 1:Take LCM and solve to convert into standard quadratic equation

 \frac{x  + 4 - x}{x(x  + 4)}  =  \frac{1}{2}  \\

or

 \frac{ 4}{ {x}^{2}  +  4x }  =  \frac{1}{2}  \\

or

  {x}^{2}   +  4x -  8 = 0 \\

Step 2: Apply Quadratic formula

x_{1,2} =  \frac{ - 4 ±  \sqrt{16 + 32} }{2}  \\

x_{1,2} =  \frac{ - 4 ± \sqrt{48}  }{2}  \\

or

x_{1,2} =  \frac{ - 4 ± 4 \sqrt{3} }{2}  \\

or

x_{1,2} =  - 2 ±2 \sqrt{3}  \\

or

\bold{x_{1} =  - 2 +2 \sqrt{3}}  \\

\bold{x_{2} =  - 2 -2 \sqrt{3}}  \\

c) \frac{1}{x}   +   \frac{1}{x - 6}  =  \frac{1}{3}  \\

Step 1:Take LCM and solve to convert into standard quadratic equation

 \frac{x - 6  +  x}{x(x - 6)}  =  \frac{1}{3}  \\

or

3(2x - 6) =  {x}^{2}  - 6x \\

or

6x - 18 -  {x}^{2}  + 6x = 0 \\

or

 {x}^{2}  - 12x + 18 = 0

Step 2: Apply Quadratic formula

x_{1,2} =  \frac{12 ±  \sqrt{144 - 72} }{2}  \\

or

x_{1,2} =  \frac{12 ± 6 \sqrt{2} }{2}  \\

or

x_{1,2} =  {6 ±3 \sqrt{2} }  \\

or

\bold{x_1 =  {6 + 3 \sqrt{2} }}  \\

\bold{x_2=  {6 - 3 \sqrt{2} }}  \\

Final answer:

a)\pink{x =  \frac{5 +  \sqrt{29} }{2}}   \\ \\ \pink{x =  \frac{5  -  \sqrt{29} }{2}  }\\

b)\green{x =  - 2 + 2 \sqrt{3} } \\  \\ \green{x =  - 2 - 2 \sqrt{3}}  \\

c)\red{x =  {6 + 3 \sqrt{2} }}  \\

\red{x =  {6 - 3 \sqrt{2}} }  \\

Hope it helps you.

Note*: Questions are corrected.

To learn more on brainly:

For what value of k does the Quadratic Equation X²-4kx+4k = 0 have equal positive integer solutions

https://brainly.in/question/45541025

खालील समीकरण वर्गसमीकरण आहे की नाही ते ठरवा कारण लिहा 3X2-5x+3=0

https://brainly.in/question/47583491utm_campaign=question

Similar questions