Math, asked by NainaMehra, 1 year ago

Solve by using quadratic formula:

6. \: p {}^{2} x {}^{2} + (p {}^{2} - q {}^{2} )x - q {}^{2} = 0

Ans:
 \frac{q {}^{2} }{p {}^{2} }
, -1

Standard:- 10

Content Quality Solution Required

❎ Don't Spamming ❎

Answers

Answered by siddhartharao77
33
The answer is explained in the attachment.



Hope it helps!
Attachments:

fsoniasingha: the first ques on my profile
akhlaka: yss ask dear
fsoniasingha: :)
fsoniasingha: plz go to profile
fsoniasingha: the very first ques
akhlaka: May I know in which school u study
akhlaka: for application
fsoniasingha: if asking for format then no need to write that
fsoniasingha: directly start with content
fsoniasingha: ty
Answered by Anonymous
38
Given,

Quadratic equation = p²x² + ( p² - q² )x -q² = 0

Here,

Coefficient of x²( a ) = p²

Coefficient of x ( b ) = ( p² - q² )

Constant term ( c ) = - q²

Using Quadratic formula ,

⇒ x = ( -b ± √D ) / 2a

Where, D is discriminat that is equal to ( b² - 4ac ).

⇒ D = b² - 4ac

⇒ D = ( p² - q² )² - 4p²( -q² )

⇒ D = ( p² )² + ( q² )² - 2p²q² + 4p²q²

⇒ D = p⁴ + q⁴ + 2p²q²

Squaring root both sides,

⇒ √D = √( p⁴ + q⁴ + 2 × p² × q² )

⇒ √D = √( p² + q² )²

•°• √D = ( p² + q² )

Now,

⇒ x = ( -b ± √D ) / 2a

When,

⇒ x = ( -b + √D ) / 2a

⇒ x = [ -( p² - q² ) + p² + q² ] / 2p²

⇒ x = [ -p² + q² + p² +q² ] / 2p²

⇒x = ( 2q² )/( 2p² )

•°• x = q²/p²

When,

⇒ x = [ -b - √D ] / 2a

⇒ x = [ -( p² - q² ) - ( p² + q² ) ] / 2( p² )

⇒ x = [ -p² + q² - p² - q² ] / 2p²

⇒ x = ( -2p² ) / 2p²

•°• x = -1

Hence , x = ( p²/q² ) or ( -1 ).

Hakar: Anwesome !
akhlaka: Gr8 answer.....
kapil699: too big
Similar questions