Solve by using quadratic formula:
Ans:
, -1
Standard:- 10
Content Quality Solution Required
❎ Don't Spamming ❎
Answers
Answered by
33
The answer is explained in the attachment.
Hope it helps!
Hope it helps!
Attachments:
fsoniasingha:
the first ques on my profile
Answered by
38
Given,
Quadratic equation = p²x² + ( p² - q² )x -q² = 0
Here,
Coefficient of x²( a ) = p²
Coefficient of x ( b ) = ( p² - q² )
Constant term ( c ) = - q²
Using Quadratic formula ,
⇒ x = ( -b ± √D ) / 2a
Where, D is discriminat that is equal to ( b² - 4ac ).
⇒ D = b² - 4ac
⇒ D = ( p² - q² )² - 4p²( -q² )
⇒ D = ( p² )² + ( q² )² - 2p²q² + 4p²q²
⇒ D = p⁴ + q⁴ + 2p²q²
Squaring root both sides,
⇒ √D = √( p⁴ + q⁴ + 2 × p² × q² )
⇒ √D = √( p² + q² )²
•°• √D = ( p² + q² )
Now,
⇒ x = ( -b ± √D ) / 2a
When,
⇒ x = ( -b + √D ) / 2a
⇒ x = [ -( p² - q² ) + p² + q² ] / 2p²
⇒ x = [ -p² + q² + p² +q² ] / 2p²
⇒x = ( 2q² )/( 2p² )
•°• x = q²/p²
When,
⇒ x = [ -b - √D ] / 2a
⇒ x = [ -( p² - q² ) - ( p² + q² ) ] / 2( p² )
⇒ x = [ -p² + q² - p² - q² ] / 2p²
⇒ x = ( -2p² ) / 2p²
•°• x = -1
Hence , x = ( p²/q² ) or ( -1 ).
Quadratic equation = p²x² + ( p² - q² )x -q² = 0
Here,
Coefficient of x²( a ) = p²
Coefficient of x ( b ) = ( p² - q² )
Constant term ( c ) = - q²
Using Quadratic formula ,
⇒ x = ( -b ± √D ) / 2a
Where, D is discriminat that is equal to ( b² - 4ac ).
⇒ D = b² - 4ac
⇒ D = ( p² - q² )² - 4p²( -q² )
⇒ D = ( p² )² + ( q² )² - 2p²q² + 4p²q²
⇒ D = p⁴ + q⁴ + 2p²q²
Squaring root both sides,
⇒ √D = √( p⁴ + q⁴ + 2 × p² × q² )
⇒ √D = √( p² + q² )²
•°• √D = ( p² + q² )
Now,
⇒ x = ( -b ± √D ) / 2a
When,
⇒ x = ( -b + √D ) / 2a
⇒ x = [ -( p² - q² ) + p² + q² ] / 2p²
⇒ x = [ -p² + q² + p² +q² ] / 2p²
⇒x = ( 2q² )/( 2p² )
•°• x = q²/p²
When,
⇒ x = [ -b - √D ] / 2a
⇒ x = [ -( p² - q² ) - ( p² + q² ) ] / 2( p² )
⇒ x = [ -p² + q² - p² - q² ] / 2p²
⇒ x = ( -2p² ) / 2p²
•°• x = -1
Hence , x = ( p²/q² ) or ( -1 ).
Similar questions