Math, asked by chethanravi070, 3 months ago

solve by using quadratic formula x2-3x+1=0​

Answers

Answered by harshitha926594
41

Answer:

 {x}^{2}  - 3x + 1 = 0 \\ x =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}  \\ a = 1 \\ b =  - 3 \\ c = 1 \\  \\ x =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x =  \frac{ - ( - 3)± \sqrt{ {( - 3)}^{2} - 4 \times 1 \times1  } }{2 \times 1}  \\ x =  \frac{3± \sqrt{9 - 4} }{2}  \\  x=  \frac{3± \sqrt{5} }{2}  \\  \large{ \boxed{x =   \underline{ \underline{\frac{3 +  \sqrt{5} }{2} }} \:  \:  \: or \:  \:  \: \underline{ \underline{\frac{3  -   \sqrt{5} }{2}}}}}

Answered by MissTanya
62

GivEn EquAtiOn :-

  • x² - 3x + 1 = 0

To SolVe :-

  • by using Quadratic Formula

QuaDraTiC ForMulAe :-

\large{\red{\sf{\boxed{\sf{ \: x = \frac{ - b  ±  \sqrt{ {b}^{2} - 4ac }  }{2a}  }}}}}

\sf\bigstar{ \: For \:  an  \: Equation \: a {x}^{2}  + bx + c = 0}

SoLuTioN :-

Here,

  • a = 1
  • b = -3
  • c = 1

Now, By using the Above Formulae,

\sf{x  =   \frac{ - ( - 3) ± \sqrt{ {( - 3)}^{2} - (4 \times 1 \times 1) }}{(2 \times 1)}  }

\sf{x  =   \frac{   3 ± \sqrt{ 9 - 4  }}{2}  }

\sf{x  =   \frac{   3 ± \sqrt{ 5  }}{2}  }

Which is your required answer!!

Therefore,

\sf\blue{x  =   \frac{   3  +  \sqrt{ 5  }}{2}  \: and \:  \frac{3 -  \sqrt{5} }{2}  } \: \:  \underline{Answer.}

Similar questions