Math, asked by Kirti240404, 5 hours ago

solve by using Rule of Integration by parts​

Attachments:

Answers

Answered by SugarCrash
47

\Large\bf\red{\underline{\underline{Question}}}:

  • \displaystyle\bf\int x \sin 2x dx

\Large\sf\red{\underline{\underline{Solution}}}:

Integrating by parts

So, now we know :

∫ UV dx =  U ∫Vdx - ∫ {(U)'∫Vdx}dx

Take x as first function (U)  and sin 2x as second function (V) .

\displaystyle\bf\int \red{x \sin 2x\;dx} = x\int\sin 2x - \int \left\{ x'\int\sin 2x\;dx \right\} dx

= \displaystyle x \left(\blue{\dfrac{-\cos 2x }{2}}\right) - \int \left\{ (\green{1}) .\left(\blue{\dfrac{-\cos 2x }{2}}\right)   \right\} dx

=\displaystyle -\dfrac{x}{2}\cos 2x +\dfrac{1}{2}\int \cos 2x\; dx

= -\dfrac{x}{2} \cos 2x + \dfrac{1}{2}. \dfrac{\sin 2x}{2} +\sf  C

=   \dfrac{\sin 2x}{4} -\dfrac{x}{2} \cos 2x+\sf  C

Henceforth,

  • \displaystyle\bf\int x \sin 2x\; dx = \dfrac{ \sin 2x}{4} -\dfrac{x\cos x}{2} +\sf C
  • Option B is correct answer.

\Large\bf\red{\underline{\underline{Points\;to;know}}}:

  • ∫ sin x = -cos x + c
  • ∫ cos x = sin x + c
  • ∫ tan x = -log | cos x | + c = log |sec x | + c
  • ∫ cot x = log | sin x | + c
  • ∫ sec² x = tan x + c
  • \displaystyle\int \sf x^n = \dfrac{x^{n+1}}{n+1}
Similar questions