Solve by using the method of completing the square :-
Answers
➡ Question 1 :-)
The given quadratic equation :-
[ Multiplying both side by ] .
=> 2x² - 3x - 4 = 0.
=> 2x² - 3x = 4 .
➡ Question 2 :-)
The given quadratic equation:-
[ Multiplying both side by ] .
✔✔ Hence, it is solved ✅ ✅.
THANKS
#BeBrainly.
( i ) :
Given equation : √2x^2 - 3x - 2√2 = 0
⇒ √2x^2 - 3x = 2√2
⇒ ( √2x^2 /√2 ) - ( 3x /√2 ) = ( 2√2 / √2 )
⇒ x^2 - { 3x / √2 × √2 / √2 } = 2
⇒ x^2 - ( 3√2x / 2 ) = 2
⇒ x^2-(3√2x/2)+( 3√2/4)^2=2+(3√2/4)^2
⇒ [ x - ( 3√2 / 4 ) ]^2 = 2 + 18 / 16
⇒ [ x - ( 3√2 / 4 ) ]^2 = 25 / 8
⇒ x - 3√2/4 = √(25/8) or - √(25/8)
⇒ x - 3√2/4 = 5/(2√2) or - 5/(2√2)
⇒ x - 3√2/4 = (5√2)/4 or - (5√2)/4
⇒ x = (5√2)/4 + (3√2)/4 or - (5√2)/4 + (3√2)/4
⇒ x = √2( 5+3)]4 or √2(-5+3)/4
⇒ x = 2√2 or - 1/√2
( ii )
Given equation : √3x^2 + 10x + 7√3 = 0
⇒ √3x^2 + 10x = - 7√3
⇒ ( √3x^2 / √3 ) + ( 10x / √3 ) = - ( 7√3 / √3 )
⇒ x^2 + (10x/√3) = - 7
⇒ x^2 + (10√3x)/3 = - 7
⇒ x^2 + (10√3x)/3 + [ (10√3)/6 ]^2 = -7+[ (10√3)/6 ]^2
⇒ [ x + (10√3/6) ]^2 = -7+[300/36]
⇒ [ x + (10√3/6) ]^2 = -7+25/3
⇒ [ x + (10√3/6) ]^2 = 4 / 3
⇒ x + (10√3/6) = √(4/3) or - √(4/3)
⇒ x + (10√3/6) = 2/√3 or - 2/√3
⇒ x + (5√3/3) = 2√3/3 or - 2√3 / 3
⇒ x = (2√3/3)-(5√3/3) or - (2√3/3)-(5√3/3)
⇒ x = √3(2-5)/3 or -√3(2+5)/3
⇒ x = -√3 or - 7√3/3