Math, asked by Preru14, 1 year ago

Solve by using the method of completing the square :-

1) \:  \:  \sqrt{2} x {}^{2}  - 3x - 2 \sqrt{2}  = 0 \\  \\ 2) \:  \:   \sqrt{3} x {}^{2}  + 10x + 7 \sqrt{3}

Answers

Answered by Anonymous
19
Hey there !!


➡ Question 1 :-)

The given quadratic equation :-

 \: \: \sqrt{2} x {}^{2} - 3x - 2 \sqrt{2} = 0

[ Multiplying both side by  \sqrt{2} ] .

=> 2x² - 3 \sqrt{2} x - 4 = 0.

=> 2x² - 3 \sqrt{2} x = 4 .


[ \:  adding {( \frac{3}{2}) }^{2} on \: both \: side \: ]. \\  \\  =  >  {( \sqrt{2} x)}^{2}  - 2 \times  \sqrt{2} x \times  \frac{3}{2}  +  {( \frac{3}{2}) }^{2}  = 4 +  {( \frac{3}{2}) }^{2} .  \\  \\ =  >  {( \sqrt{2}x -  \frac{3}{2} )}^{2}  =  4 +  \frac{9}{4} . \\  \\  =  > {( \sqrt{2}x -  \frac{3}{2} )}^{2} =  \frac{16 + 9}{4} . \\  \\  =  > {( \sqrt{2}x -  \frac{3}{2} )}^{2} =  {( \frac{5}{2}) }^{2} . \\  \\ ( \: taking \: square \: root \: on \: both \: side, \: we \: get \: ) \\  \\  =  >  \sqrt{2} x -  \frac{3}{2}  = ± \frac{5}{2} . \\  \\  =  >  \sqrt{2} x -  \frac{3}{2}  =  \frac{5}{2}  \:  \: or \:  \:  \sqrt{2} x -  \frac{3}{2}  =  -  \frac{5}{2} . \\  \\  =  >  \sqrt{2} x =  \frac{5}{2}  +  \frac{3}{2}  \:  \: or \:  \:  \sqrt{2} x =  -  \frac{5}{2}  +  \frac{3}{2} . \\  \\  =  >  \sqrt{2} x =  \frac{8}{2}  \:  \: or \:  \:  \sqrt{2} x =  \frac{ - 2}{2} . \\  \\  =  > x =  \frac{4}{ \sqrt{2} }  \:  \: or \:  \: x =  \frac{ - 1}{ \sqrt{2} } . \\  \\  =  > x =  \frac{ \sqrt{2}  \times  \sqrt{2}  \times  \sqrt{2}  \times   \cancel{\sqrt{2}}  }{  \cancel{\sqrt{2}} }  \:  \: or \:  \: x =  \frac{ - 1}{ \sqrt{2} } . \\  \\  =  >  \boxed{ \bf \therefore x = 2 \sqrt{2}  \:  \: or \:  \: x =  \frac{ - 1}{ \sqrt{2} } .}


➡ Question 2 :-)

The given quadratic equation:-

 \sqrt{3} x {}^{2} + 10x + 7 \sqrt{3} = 0 .

[ Multiplying both side by  \sqrt{3} ] .

 =  > 3 {x}^{2}  + 10 \sqrt{3} x + 21 = 0. \\  \\  =  > 3  {x}^{2}  + 10 \sqrt{3} x  =  - 21. \\  \\  =  >  {( \sqrt{3}x) }^{2}  + 2 \times ( \sqrt{3} x) \times 5 +  {5}^{2}  =  - 21 +  {5}^{2} . \\  \\  =  >  {( \sqrt{3}x + 5) }^{2}  =  - 21 + 25. \\  \\  =  >  {( \sqrt{3} + 5) }^{2}  =  {2}^{2} . \\  \\ (taking  \: square \: root \: on \: both \: side \: we \: get \: ) \\  \\  =  >  \sqrt{3} x + 5 = 2 \:  \: or \:  \:  \sqrt{3} x + 5 = 2. \\  \\   = >  \sqrt{3} x = 2 - 5 \:  \: or \:  \:  \sqrt{3} x =  - 2 - 5. \\  \\  =  > x =  \frac{ - 3}{ \sqrt{3} }  \:  \: or \:  \: x =  \frac{ - 7}{ \sqrt{3} } . \\  \\   \boxed{ \bf \therefore x =  -  \sqrt{3}  \:  \: or \:  \: x =  \frac{ - 7}{ \sqrt{3} } .}


✔✔ Hence, it is solved ✅ ✅.



THANKS



#BeBrainly.
Answered by abhi569
9

( i ) :

Given equation : √2x^2 - 3x - 2√2 = 0

⇒ √2x^2 - 3x = 2√2

⇒ ( √2x^2 /√2 ) - ( 3x /√2 ) = ( 2√2 / √2 )

⇒ x^2 -  { 3x / √2 × √2 / √2 }  = 2

⇒ x^2 - ( 3√2x / 2 ) = 2

⇒ x^2-(3√2x/2)+( 3√2/4)^2=2+(3√2/4)^2

⇒ [ x - ( 3√2 / 4 ) ]^2 = 2 + 18 / 16

⇒ [ x - ( 3√2 / 4 ) ]^2 = 25 / 8

⇒ x - 3√2/4 = √(25/8) or - √(25/8)

⇒ x - 3√2/4 = 5/(2√2) or - 5/(2√2)

⇒ x - 3√2/4 = (5√2)/4 or - (5√2)/4

⇒ x = (5√2)/4 + (3√2)/4 or - (5√2)/4 + (3√2)/4

⇒ x = √2( 5+3)]4 or √2(-5+3)/4

⇒ x = 2√2 or - 1/√2


( ii )

Given equation : √3x^2 + 10x + 7√3 = 0

√3x^2 + 10x = - 7√3

⇒ ( √3x^2 / √3 ) + ( 10x / √3 ) = - ( 7√3 / √3 )

⇒ x^2 + (10x/√3) = - 7

⇒ x^2 + (10√3x)/3 = - 7

⇒ x^2 + (10√3x)/3 + [ (10√3)/6 ]^2 = -7+[ (10√3)/6 ]^2

⇒ [ x + (10√3/6) ]^2 = -7+[300/36]

⇒ [ x + (10√3/6) ]^2 = -7+25/3

⇒ [ x + (10√3/6) ]^2 = 4 / 3

⇒ x + (10√3/6) = √(4/3) or - √(4/3)

⇒ x + (10√3/6) = 2/√3 or - 2/√3

⇒ x + (5√3/3) = 2√3/3 or - 2√3 / 3

⇒ x = (2√3/3)-(5√3/3) or - (2√3/3)-(5√3/3)

⇒ x = √3(2-5)/3 or -√3(2+5)/3

⇒ x = -√3 or - 7√3/3

Similar questions