Math, asked by Preru14, 1 year ago

Solve by using the method of completing the square :-

x {}^{2}  - ( \sqrt{2}  + 1)x +  \sqrt{2}  = 0

Answers

Answered by Anonymous
3
Hey there !!


▶ The given quadratic equation :-

x {}^{2} - ( \sqrt{2} + 1)x + \sqrt{2} = 0

 =  > x {}^{2} - ( \sqrt{2} + 1)x  =  -  \sqrt{2} . \\  \\ (adding  {( \frac{ \sqrt{2} + 1 }{2}) }^{2} on \: both \: side ) \\  \\  =  >  {x}^{2}  - 2 \times x \times ( \frac{ \sqrt{2}  + 1}{2} ) + {( \frac{ \sqrt{2} + 1 }{2}) }^{2} =  -  \sqrt{2}  + {( \frac{ \sqrt{2} + 1 }{2}) }^{2}. \\  \\  =  > {[x - ( \frac{ \sqrt{2} + 1 }{2} )]}^{2}  =  -  \sqrt{2}  +  \frac{2 + 1 + 2 \sqrt{2} }{4} . \\  \\  =  >  {[x - ( \frac{ \sqrt{2} + 1 }{2} )]}^{2} =  \frac{ - 4 \sqrt{2}  + 2 + 1 + 2 \sqrt{2} }{4} . \\  \\  =  >  {[x - ( \frac{ \sqrt{2} + 1 }{2} )]}^{2} =  \frac{2 - 2 \sqrt{2}  + 1}{4} . \\  \\  =  >  {[x - ( \frac{ \sqrt{2} + 1 }{2} )]}^{2} =  {( \frac{ \sqrt{2}  - 1}{2}  )}^{2} . \\  \\ [ \: taking \: square \: root \: on \: both \: side ,we \: get \:] \\  \\  =  > x - ( \frac{ \sqrt{2} + 1 }{2} ) =  ±( \frac{ \sqrt{2}  -  1 }{2} ). \\  \\  =  > x - ( \frac{ \sqrt{2} + 1 }{2} ) = ( \frac{ \sqrt{2}  -  1 }{2} ) \:  \: or \:  \: x - ( \frac{ \sqrt{2} + 1 }{2} ) =  - ( \frac{ \sqrt{2}  -  1 }{2} ). \\  \\  =  > x = ( \frac{ \sqrt{2} + 1 }{2} ) + ( \frac{ \sqrt{2}  -  1 }{2} ) \:  \:  \: or \:  \:  \: x = ( \frac{ \sqrt{2} + 1 }{2} ) - ( \frac{ \sqrt{2}  -  1 }{2} ). \\  \\  =  > x =  \frac{ \sqrt{2}  +  \cancel1 +  \sqrt{2}  -  \cancel1 }{2}  \:  \:  \: or \:  \:  \: x =  \frac{  \cancel{\sqrt{2} } + 1 -   \cancel{\sqrt{2} } + 1}{2} . \\  \\  =  > x =  \frac{ \cancel2 \sqrt{2} }{ \cancel2}  \:  \: or \:  \: x =   \cancel{\frac{2}{2} }. \\  \\  \boxed{ \bf \therefore x =  \sqrt{2}  \:  \: or \:  \: x = 1.}



✔✔ Hence, it is solved ✅✅.




THANKS



#BeBrainly.
Similar questions