solve class 10 ques 29
Attachments:
Answers
Answered by
4
Answer:
2b = a + c
Step-by-step explanation:
Given Equation is (b - c)x² + (c - a)x + (a - b) = 0.
Here, a = (b - c), b = (c - a), c = (a - b).
Given that roots are real.
∴ D = 0
b² - 4ac = 0
⇒ (c - a)² - 4(b - c)(a - b) = 0
⇒ (c + a² - 2ac) - 4(ab - b² - ca + bc) = 0
⇒ c² + a² - 2ac - 4ab + 4b² + 4ca - 4bc = 0
⇒ a² + 4b² + c² - 4ab - 4bc + 2ac = 0
⇒ a² + (-2b)² + c² + 2(a)(-2b) + 2(-2b)(c) + 2(c)(a) = 0
⇒ (a - 2b + c)² = 0
⇒ a - 2b + c = 0
⇒ -2b = -a - c
⇒ -2b = -(a + c)
⇒ 2b = a + c.
Hope it helps!
siddhartharao77:
:-)
Similar questions