Math, asked by raaz4790, 5 months ago

solve correct answer. ​

Attachments:

Answers

Answered by BrainlyEmpire
52

According to the power rule,

\bold \red{ \int x {}^{n} .dx}  \:  \rightarrow \bold \green{ \dfrac{x {}^{n + 1} }{n + 1}  + c}

Case (I), ㅤ \sf \int x {}^{3} .dx

 \mapsto \sf \:  \dfrac{x {}^{3 + 1} }{3 + 1}  + c

 \mapsto { \boxed{ \sf{\dfrac{x {}^{4} }{4}  + c}}} \:  \bigstar

ㅤㅤㅤㅤㅤ

Case (II), ㅤ\sf \int x {}^{9} .dx

 \mapsto \sf  \:  \dfrac{x {}^{9 + 1} }{9 + 1}  + c

\mapsto{ \boxed{ \sf{ \frac{x {}^{10} }{10}  + c}}} \:  \bigstar

ㅤㅤㅤㅤㅤ

Case (III), ㅤ \sf\int x {}^{2} .dx

\mapsto \sf  \:  \dfrac{x {}^{2 + 1} }{2 + 1}  + c

\mapsto{ \boxed{ \sf{ \frac{x {}^{3} }{3}  + c}}} \:  \bigstar

______________________________________

Answered by Anonymous
26

Answer

(I), ㅤ \sf \int x {}^{3} .dx

 \mapsto \sf \:  \dfrac{x {}^{3 + 1} }{3 + 1}  + c

 \mapsto { \boxed{ \sf{\dfrac{x {}^{4} }{4}  + c}}} \:  \bigstar

ㅤㅤㅤㅤㅤ

(II), ㅤ\sf \int x {}^{9} .dx

 \mapsto \sf  \:  \dfrac{x {}^{9 + 1} }{9 + 1}  + c

\mapsto{ \boxed{ \sf{ \frac{x {}^{10} }{10}  + c}}} \:  \bigstar

ㅤㅤㅤㅤㅤ

(III), ㅤ \sf\int x {}^{2} .dx

\mapsto \sf  \:  \dfrac{x {}^{2 + 1} }{2 + 1}  + c

\mapsto{ \boxed{ \sf{ \frac{x {}^{3} }{3}  + c}}} \:  \bigstar

______________________________________

Similar questions