Math, asked by anjum1597, 3 months ago

solve correctly.......​

Attachments:

Answers

Answered by BrainlyEmpire
7

Given :-

An equation, \bf \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta}}  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta}}  = 2 \: cosec \:  \theta

To Prove :-

\bf \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta}}  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta}}  = 2 \: cosec \:  \theta

Proof :-

Taking L.H.S.,

 \implies \bf L.H.S. = \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta}}  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta}}

Now, rationalize the denominator,

 \implies \bf  \bf \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta} \times  \dfrac{1 + cos \:  \theta}{1 + cos \:  \theta} }  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta} \times  \dfrac{1 - cos \:  \theta}{1 - cos \:  \theta} }

Using identity in the denominator,

 \boxed{ \bf{ \pink{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}

 \implies \bf  \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ {(1)}^{2} -  {(cos \:  \theta)}^{2}  } }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ {(1)}^{2} -  {(cos \:  \theta)}^{2}  } }  \\  \\  \\  \implies \bf  \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ (1 -  {cos \:}^{2}  \theta )} }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ (1 -  {cos}^{2}  \:  \theta)} } \\  \\  \\  \implies \bf \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ {sin}^{2}  \theta } }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ {sin}^{2}  \:  \theta} } \\  \\  \\  \implies \bf  \dfrac{1 + cos \:  \theta}{sin \:  \theta}  +  \dfrac{1 - cos \:  \theta}{sin \:  \theta}  \\  \\  \\  \implies \bf  \dfrac{(1 + cos \:  \theta) + (1 - cos \:  \theta)}{sin \:  \theta}  \\  \\  \\  \implies \bf  \dfrac{1 + 1}{sin \:   \theta}  \\  \\  \\  \implies \bf  \dfrac{2}{sin \:  \theta}

We know that,

 \: \: \bf \bullet \: \: \: cosec \: \theta = \dfrac{1}{sin \: \theta}

Therefore,

 \implies \bf 2 \: cosec \:  \theta \\ \\ \\ \bf \implies R.H.S.

Hence Proved !

Note:-

  • learn all trigonometric identity for better understanding.
Answered by Anonymous
29

Answer:

Proof :-

Taking L.H.S.,

 \implies \bf L.H.S. = \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta}}  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta}}

Now, rationalize the denominator,

 \implies \bf  \bf \sqrt{ \dfrac{1 + cos  \: \theta}{1 - cos  \: \theta} \times  \dfrac{1 + cos \:  \theta}{1 + cos \:  \theta} }  +  \sqrt{ \dfrac{1 - cos \:  \theta}{1 + cos \:  \theta} \times  \dfrac{1 - cos \:  \theta}{1 - cos \:  \theta} }

Using identity in the denominator,

 \boxed{ \bf{ \orange{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}

 \implies \bf  \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ {(1)}^{2} -  {(cos \:  \theta)}^{2}  } }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ {(1)}^{2} -  {(cos \:  \theta)}^{2}  } }  \\  \\  \\  \implies \bf  \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ (1 -  {cos \:}^{2}  \theta )} }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ (1 -  {cos}^{2}  \:  \theta)} } \\  \\  \\  \implies \bf \sqrt{ \dfrac{ {(1 + cos \:  \theta)}^{2} }{ {sin}^{2}  \theta } }  +  \sqrt{ \dfrac{ {(1 - cos \:  \theta)}^{2} }{ {sin}^{2}  \:  \theta} } \\  \\  \\  \implies \bf  \dfrac{1 + cos \:  \theta}{sin \:  \theta}  +  \dfrac{1 - cos \:  \theta}{sin \:  \theta}  \\  \\  \\  \implies \bf  \dfrac{(1 + cos \:  \theta) + (1 - cos \:  \theta)}{sin \:  \theta}  \\  \\  \\  \implies \bf  \dfrac{1 + 1}{sin \:   \theta}  \\  \\  \\  \implies \bf  \dfrac{2}{sin \:  \theta}

We know that,

 \: \: \bf \bullet \: \: \: cosec \: \theta = \dfrac{1}{sin \: \theta}

Therefore,

 \implies \bf 2 \: cosec \:  \theta \\ \\ \\ \bf \implies R.H.S.

Hence Proved !

Similar questions