Math, asked by nancy359, 1 day ago

SOLVE:-


cos A - sin A + 1 / cos A + sin A -1 = cosec A + cot A , using the  identity  cosec ² A = 1+ cos² A​

Answers

Answered by mathdude500
6

Appropriate Question :-

Prove that,

 \sf \: \dfrac{cosA - sinA + 1}{cosA + sinA - 1} = cosecA + cotA, \: using \:  {cosec}^{2}A = 1 +  {cot}^{2}A

\large\underline{\sf{Solution-}}

Consider, LHS

 \rm :\longmapsto\:\sf \: \dfrac{cosA - sinA + 1}{cosA + sinA - 1}

On dividing numerator and denominator by sinA, we get

 \sf \:  =  \: \dfrac{\dfrac{cosA - sinA + 1}{sinA} }{\dfrac{cosA + sinA - 1}{sinA} }

 \sf \:  =  \: \dfrac{\dfrac{cosA}{sinA} -  \dfrac{sinA}{sinA}  + \dfrac{1}{sinA} }{\dfrac{cosA}{sinA} + \dfrac{sinA}{sinA} - \dfrac{1}{sinA}  }

We know, that

\boxed{ \tt{ \:  \frac{cosx}{sinx} = cotx \: }}

So, using this, we get

 \sf \:  =  \: \dfrac{cotA - 1 + cosecA}{cotA + 1 - cosecA}

can be re-arranged as

 \sf \:  =  \: \dfrac{cotA+ cosecA - 1}{cotA + 1 - cosecA}

Now, given that, using

\boxed{ \tt{ \:  {cosec}^{2}x = 1 +  {cot}^{2}x\rm \implies\: {cosec}^{2}x -  {cot}^{2}x = 1}}

So, in numerator replace 1, we get

 \sf \:  =  \: \dfrac{cotA+ cosecA - ( {cosec}^{2}A -  {cot}^{2}A)}{cotA + 1 - cosecA}

We know,

\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }}

So, using this identity in numerator, we get

 \sf \:  =  \: \dfrac{cotA + cosecA - (cosecA + cotA)(cosecA - cotA)}{cotA + 1 - cosecA}

 \sf \:  =  \: \dfrac{(cotA + cosecA) \: [1 - (cosecA - cotA) \: ]}{cotA + 1 - cosecA}

 \sf \:  =  \: \dfrac{(cotA + cosecA) \: \cancel{ [1 - cosecA  +  cotA\: ]}}{ \cancel{cotA + 1 - cosecA}}

 \sf \:  =  \: cotA + cosecA

Hence,

  \:  \:  \: \red{\boxed{ \tt{ \: \: \dfrac{cotA - 1 + cosecA}{cotA + 1 - cosecA}  = cosecA + cotA \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by Aadityabhai
2

Step-by-step explanation:

when you play FF

Respiration is the process in which the cells of an organism obtain energy by combining oxygen and glucose, resulting in the release of carbon dioxide, water, and ATP (energy).

Similar questions