Math, asked by yuvrajsinghkaura, 1 year ago

solve cos theta + cos 3 theta + cos 5 theta + cos 7 theta =0

Answers

Answered by subodh70007
17

Cos theta + cos 3 theta + cos 5theta + cos 7theta =0. Now=2cos4theta.cos3theta + 2cos4theta.costheta=0 Now , cos4theta(2cos2theta.costheta)=0. Now , either cos4theta=0

theta=(2n+1)π/2 and cos2theta=0

theta=(2n+1)π/4 and cos4theta=0

theta=(2n+1)π/8


Answered by pinquancaro
8

Answer:

\theta=(2n+1)\frac{\pi}{2}\cap(2n+1)\frac{\pi}{4}\cap(2n+1)\frac{\pi}{8},n\in \mathbb{Z}

Step-by-step explanation:

Given : Expression \cos \theta + \cos 3 \theta + \cos 5 \theta + \cos 7 \theta =0

To find : Solve the expression ?

Solution :

Applying trigonometric identity,

\cos a+\cos b=2\cos (\frac{a+b}{2})\cos(\frac{a-b}{2})

(\cos \theta + \cos 7 \theta) + (\cos 3 \theta + \cos 5\theta) =0

(2\cos(\frac{\theta+7\theta}{2})\cos (\frac{\theta-7\theta}{2}))+ (2\cos (\frac{3\theta+5\theta}{2})\cos (\frac{3\theta-5\theta}{2}) =0

2\cos(4\theta)\cos (3\theta)+2\cos (4\theta)\cos (\theta) =0

2\cos(4\theta)[\cos (3\theta)+\cos (\theta)] =0

2\cos(4\theta)[2\cos(\frac{3\theta+\theta}{2})\cos(\frac{3\theta-\theta}{2})] =0

2\cos(4\theta)[2\cos(2\theta)\cos(\theta)] =0

4\cos(4\theta)\cos(2\theta)\cos(\theta)=0

\cos(\theta)\cos(2\theta)=0

So,

1) \cos(\theta)=0

\theta=(2n+1)\frac{\pi}{2}

2) \cos(2\theta)=0

2\theta=(2n+1)\frac{\pi}{2}

\theta=(2n+1)\frac{\pi}{4}

3) \cos(4\theta)=0

4\theta=(2n+1)\frac{\pi}{2}

\theta=(2n+1)\frac{\pi}{8}

The solution of the expression is

\theta=(2n+1)\frac{\pi}{2}\cap(2n+1)\frac{\pi}{4}\cap(2n+1)\frac{\pi}{8},n\in \mathbb{Z}

Similar questions