Math, asked by chayalakshmisripitha, 17 days ago

solve cos thetha / 1- sin thetha + cos thetha / 1+ sin thetha​ = 4

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given trigonometric equation is

\sf \: \dfrac{cos\theta }{1 - sin\theta }  + \dfrac{cos\theta }{1 + sin\theta }  = 4 \\

can be rewritten as

\sf \:cos\theta  \bigg(\dfrac{1}{1 - sin\theta }  + \dfrac{1}{1 + sin\theta }\bigg)  = 4 \\

\sf \:cos\theta  \bigg(\dfrac{1 + sin\theta  + 1 - sin\theta }{(1 - sin\theta)(1 + sin\theta )}  \bigg)  = 4 \\

\sf \:cos\theta  \bigg(\dfrac{2}{1 -  {sin}^{2} \theta }  \bigg)  = 4 \\

 \sf \: \dfrac{2cos\theta }{ {cos}^{2}\theta }  = 4 \\

 \sf \: \dfrac{2}{cos\theta }  = 4

 \sf \: cos\theta  = \dfrac{1}{2}  \\

 \sf \: cos\theta  = cos60 \degree  \\

\bf\implies \: \sf \: \theta  = 60 \degree  \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:(x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }} \\

\boxed{ \rm{ \: {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answered by kvalli8519
2

refer the given attachment

Attachments:
Similar questions