Math, asked by anshpoddar2005, 28 days ago

Solve cos x dy/dx - y sin x = y^3 cos^2 x

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \cos(x)  \frac{dy}{dx}  - y \sin(x)  =  {y}^{3}  \cos^{2} (x)  \\

  \implies \frac{dy}{dx}  - y \tan(x)  =  {y}^{3}  \cos (x)  \\

  \implies {y}^{ - 3} \frac{dy}{dx}  - y ^{ - 2} \tan(x)  =    \cos (x)  \\

Let \:  -  {y}^{ - 2}  = v \\  \implies{y}^{ - 3}  \frac{dy}{dx}  =  \frac{1}{2}  \frac{dv}{dx}

  \implies  \frac{1}{2}  \frac{dv}{dx}   + v \tan(x)  =    \cos (x)  \\

  \implies   \frac{dv}{dx}   + 2v \tan(x)  =   2 \cos (x)  \\

I.F. =  {e}^{ \int2 \tan(x) dx}  =  {e}^{2 ln | \sec(x) |  }  =  {e}^{ ln \sec ^{2} (x)  } =  \sec^{2} ( x)   \\

v. \sec^{2} (x)  =  \int2 \cos(x)  \sec ^{2} (x) dx \\

 \implies \: v. \sec^{2} (x)  =  \int2 \sec (x) dx \\

 \implies \: v. \sec^{2} (x)  = 2 ln |  \sec(x)  +  \tan(x)  |   + c\\

 \implies \:  -  {y}^{ - 2} . \sec^{2} (x)  = 2 ln |  \sec(x)  +  \tan(x)  |   + c\\

Answered by payalchatterje
1

Answer:

Given,

        cos(x) \frac{dy}{dx}  - ysin(x) = y^{3}  cos^{2} x\\or, \frac{dy}{dx}  - y tan(x) = y^{3} cos(x)\\ or, y^{-3} \frac{dy}{dx }   - y^{-2} tan(x) = cos(x) ..................................(i)

Let,  

         - y^{-2} = v

 →    y^{-3}  \frac{dy}{dx}  = \frac{1}{2}  \frac{dv}{dx}

Putting this value in equation (i), we will get,

 \frac{dv}{dx}  + 2vtan(x) = 2cos(x) ........................................................(ii)

Integrating factor(I.F.) = e^\int 2tan(x) = e^2ln|secx| = sec^2 (x)

v .sec^2 x = \int2 cos(x) sec^2 x dx

v sec^2 x = \int 2 sec (x) dx

v. sec^2 x = 2 ln |sec(x) + tan(x)| + c

- \frac{1}{y^{2} }  = 2ln|sec(x) + tan(x) | +c

Similar questions