Physics, asked by Anonymous, 1 year ago

Solve Current Electricity ​

Attachments:

Answers

Answered by rehabsadaf
0

hala mate,

Current flowing through various branches of the circuit is represented in the given figure.

Physics Class 12 Current Electricity Circuit 1

I1 = Current flowing through the outer circuit

I2 = Current flowing through branch AB

I3 = Current flowing through branch AD

I2 − I4 = Current flowing through branch BC

I3 + I4 = Current flowing through branch CD

I4 = Current flowing through branch BD

By Loop law:-

For the closed circuit ABDA, potential is zero i.e.

10I2 + 5I4 − 5I3 = 0

2I2 + I4 −I3 = 0

I3 = 2I2 + I4 … (1)

For the closed circuit BCDB, potential is zero i.e.

5(I2 − I4) − 10(I3 + I4) − 5I4 = 0

5I2 + 5I4 − 10I3 − 10I4 − 5I4 = 0

5I2 − 10I3 − 20I4 = 0

I2 = 2I3 + 4I4 … (2)

For the closed circuit ABCFEA, potential is zero i.e.

−10 + 10 (I1) + 10(I2) + 5(I2 − I4) = 0

10 = 15I2 + 10I1 − 5I4

3I2 + 2I1 − I4 = 2 … (3)

From equations (1) and (2), we obtain

I3 = 2(2I3 + 4I4) + I4

I3 = 4I3 + 8I4 + I4

− 3I3 = 9I4

− 3I4 = + I3 … (4)

Putting equation (4) in equation (1), we obtain

I3 = 2I2 + I4

− 4I4 = 2I2

I2 = − 2I4 … (5)

It is evident from the given figure that,

I1 = I3 + I2 … (6)

Putting equation (6) in equation (1), we obtain

3I2 +2(I3 + I2) − I4 = 2

5I2 + 2I3 − I4 = 2 … (7)

Putting equations (4) and (5) in equation (7), we obtain

5(−2 I4) + 2(− 3 I4) − I4 = 2

− 10I4 − 6I4 − I4 = 2

17I4 = − 2

I4 = - (2/17)

Equation (4) reduces to

I3 = − 3(I4)

=-3(-2/17) = (6/17) A

I2=-2(I4)

=-2(-2/17) = (4/17) A

I2 - I4 = (4/17) – (-2/17) = (6/17) A

I3+ I4 = (6/17) + (-2/17) = (4/17) A

I1 = I3 + I2 = (6/17) + (4/17) = (10/17) A

Therefore, current in branch AB= (4/17) A

In branch BC = (6/17) A

In branch CD = (4/17) A

In branch AD= (6/17) A

In branch BD = (-2/17) A

Total Current =(4/17) +(6/17)+(-4/17)+(6/17)+(-2/17)=(10/17) A

hope it helps..


rehabsadaf: Hm ok
Similar questions