Math, asked by rownakmazumder, 2 days ago

Solve d 2y dx 2 − 2 tan x dy dx + 5y = 0

Answers

Answered by babitaara38
5

Answer:

solve: d^2/dx^2 - 2 tan x dy/dx + 5y = e^x sec x

Answered by priyarksynergy
3

Solve the given differential equation \frac{d^2y}{dx^2}-2tanx \frac{dy}{dx}+5y=0

Explanation:

  • In order to solve a differential equation we need to eliminate all the derivative terms from the equation and simply obtain a function in 'x' and 'y'.
  • Given is the differential equation, \frac{d^2y}{dx^2}-2tanx \frac{dy}{dx}+5y=0
  • Multiplying both sides by cosx in the given equation we get,     ->cosx\frac{d^2y}{dx^2}-2sinx \frac{dy}{dx}+5ycosx=0    ---(i)
  • Now let us consider another function 'u' such that ,
  •                          u=ycosx      ---(a)
  • Differentiating 'u' we get,  
  •                  ->\frac{du}{dy}=cosx\frac{dy}{dx}  -ysinx\\->\frac{d^2u}{dy^2}=cosx\frac{d^2y}{dx^2}  -2\frac{dy}{dx} sinx-ycosx  ---(ii)
  • From (i) and (ii) we get,            \frac{d^2u}{dx^2}+6u=0\\
  • To solve this we put u=e^{kx} hence, we get
  • \frac{d^2(e^{kx})}{dx^2}+6e^{kx}=0\\ ->k^2e^{kx}+6e^{kx}=0\\->(k^2+6)e^{kx}=0\\->k=\pm i\sqrt{6}  \\->u=c\ e^{i\sqrt{6} }+c'e^{-i\sqrt{6} }    (here c and c' are arbitrary constant)  
  • using Euler identity we can further simplify u as,
  • ->u=c(cos(x\sqrt{6} )+isin(x\sqrt{6} ))+c'(cos(x\sqrt{6} )-isin(x\sqrt{6} ))\\->u=(c+c')cos(x\sqrt{6} )+(c-c')isin(x\sqrt{6} )\\->u=kcos(x\sqrt{6} )+k'isin(x\sqrt{6} )      
  • Here k and k' are arbitrary constants.                          
  • From (a) we get the final solution of the differential equation as,   y=\frac{1}{cosx}(kcos(x\sqrt{6} )+k'isin(x\sqrt{6} ))

Similar questions