Math, asked by priyarambabu6, 2 months ago

solve (D^3+3D^2+2D)y=x^2​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:( {D}^{3} +  {3D}^{2} + 2D)y =  {x}^{2}

Its Auxiliary equation is

\rm :\longmapsto\: {D}^{3} +  {3D}^{2} + 2D= 0

\rm :\longmapsto\:D( {D}^{2} +3D  + 2) = 0

\rm :\longmapsto\:D( {D}^{2} +2D + D  + 2) = 0

\rm :\longmapsto\:D(D + 2)(D + 1) = 0

\rm :\implies\:D = 0, - 1, - 2

Therefore,

Complementary function is given by

\rm :\longmapsto\:y_h = a \:  +  \: b {e}^{ - x} +  {ce}^{ - 2x}  -  -  - (1)

Now, we have to find particular solution to non - homogeneous solution using method of undetermined coefficients.

Let

\rm :\longmapsto\:y_p = x(p {x}^{2}  + qx + r) -  - (2)

On differentiating thrice, w. r. t. x, we get

\rm :\longmapsto\:y_p =p {x}^{3}  + q {x}^{2}  + rx

\rm :\longmapsto\:y_p' = 3p {x}^{2} + 2qx + r

\rm :\longmapsto\:y_p'' = 6p {x} + 2q

\rm :\longmapsto\:y_p''' = 6p

Now, given differential equation is

\rm :\longmapsto\:( {D}^{3} +  {3D}^{2} + 2D)y =  {x}^{2}

\rm :\longmapsto\:{D}^{3}y +  {3D}^{2}y + 2Dy =  {x}^{2}

\rm :\longmapsto\:y_p''' + 3y_p'' + 2y_p' =  {x}^{2}

\rm :\longmapsto\:6p  + 3(6px + 2q) + 2( {3px}^{2} + 2qx + r) =  {x}^{2}

\rm :\longmapsto\:6p + 18px + 6q+ {6px}^{2} + 4qx + 2r=  {x}^{2}

\rm :\longmapsto\: {6px}^{2} + (18p + 4q)x + 6p + 6q + 2r =  {x}^{2}

Now,

On comparing the coefficients, we get

\rm :\longmapsto\:6p = 1\rm \implies\:p = \dfrac{1}{6}

\rm :\longmapsto\:18p + 4q = 0\rm \implies\:3 + 4q = 0\rm \implies\:q =  - \dfrac{3}{4}

and

\rm :\longmapsto\:6p + 6q + 2r = 0

\rm \implies\:r =  - \dfrac{7}{4}

On substituting the values of p, q and r, in equation (2),

\rm :\longmapsto\:y_p = x \bigg( \dfrac{1}{6}  {x}^{2}  -  \dfrac{3}{4} x -  \dfrac{7}{4} \bigg )

Hence,

General solution is given by

\rm :\longmapsto\:y = y_h + y_p

\rm \implies\:y =  a +b {e}^{ - x} +  {ce}^{ - 2x} +  x \bigg( \dfrac{1}{6}  {x}^{2}  -  \dfrac{3}{4} x -  \dfrac{7}{4} \bigg )

Similar questions