solve(D^3-5D^2+8D-4)y=e2x
Answers
Answer:
What is the general solution to (D^3-5D^2+8D-4) y=e^2x?
For the equation ( D^3 -5D^2 +8D -4)y = e^2x ,the characteristic equation is
m^3 -5m^2 +8m -4 = ( m-1)( m-2)^2 =0 , roots 1 , 2 ,2 .The complementary
function is yh = C1e^x + C2e^2x + C3xe^2x .
For the particular integral is appropriate the function yp = A(x^2)e^2x.
substituting in the equation gives A = 1/2 .Therefore the required solution is
y = C1e^x + C2e^2x + C3xe^2x +(1/2)(x^2)e^2x .
please mark me as brainlist answer please ok
Answer:
ꜱɪᴍᴘʟɪꜰʏɪɴɢ
(ᴅ3 + -5ᴅ + 8ᴅ + -4) * ʏ = ᴇ2x
ʀᴇᴏʀᴅᴇʀ ᴛʜᴇ ᴛᴇʀᴍꜱ:
(-4 + -5ᴅ + 8ᴅ + ᴅ3) * ʏ = ᴇ2x
ᴄᴏᴍʙɪɴᴇ ʟɪᴋᴇ ᴛᴇʀᴍꜱ: -5ᴅ + 8ᴅ = 3ᴅ
(-4 + 3ᴅ + ᴅ3) * ʏ = ᴇ2x
ʀᴇᴏʀᴅᴇʀ ᴛʜᴇ ᴛᴇʀᴍꜱ ꜰᴏʀ ᴇᴀꜱɪᴇʀ ᴍᴜʟᴛɪᴘʟɪᴄᴀᴛɪᴏɴ:
ʏ(-4 + 3ᴅ + ᴅ3) = ᴇ2x
(-4 * ʏ + 3ᴅ * ʏ + ᴅ3 * ʏ) = ᴇ2x
(-4ʏ + 3ʏᴅ + ʏᴅ3) = ᴇ2x
ꜱᴏʟᴠɪɴɢ
-4ʏ + 3ʏᴅ + ʏᴅ3 = ᴇ2x
ꜱᴏʟᴠɪɴɢ ꜰᴏʀ ᴠᴀʀɪᴀʙʟᴇ 'ʏ'.
ᴍᴏᴠᴇ ᴀʟʟ ᴛᴇʀᴍꜱ ᴄᴏɴᴛᴀɪɴɪɴɢ ʏ ᴛᴏ ᴛʜᴇ ʟᴇꜰᴛ, ᴀʟʟ ᴏᴛʜᴇʀ ᴛᴇʀᴍꜱ ᴛᴏ ᴛʜᴇ ʀɪɢʜᴛ.
ʀᴇᴏʀᴅᴇʀ ᴛʜᴇ ᴛᴇʀᴍꜱ:
-1ᴇ2x + -4ʏ + 3ʏᴅ + ʏᴅ3 = ᴇ2x + -1ᴇ2x
ᴄᴏᴍʙɪɴᴇ ʟɪᴋᴇ ᴛᴇʀᴍꜱ: ᴇ2x + -1ᴇ2x = 0
-1ᴇ2x + -4ʏ + 3ʏᴅ + ʏᴅ3 = 0
ᴛʜᴇ ꜱᴏʟᴜᴛɪᴏɴ ᴛᴏ ᴛʜɪꜱ ᴇQᴜᴀᴛɪᴏɴ ᴄᴏᴜʟᴅ ɴᴏᴛ ʙᴇ ᴅᴇᴛᴇʀᴍɪɴᴇᴅ.
Step-by-step explanation:
ᎻϴᏢᎬ ᎷᎽ ᎪΝՏᏔᎬᎡ ᏆՏ ᎻᎬᏞᏢҒႮᏞ ҒϴᎡ ᎽϴႮ (◕ᴗ◕✿)