solve (D²-18D -77)y=0
Answers
GIVEN :–
• Differentiate equation –
TO FIND :–
• Solution of differential equation = ?
SOLUTION :–
• We know that –
• Now let's find C.F. –
• Auxiliary equation –
• Hence , C.F. –
• And –
GIVEN :–
• Differentiate equation –
⟹(D
2
−18D−77)y=0
TO FIND :–
• Solution of differential equation = ?
SOLUTION :–
• We know that –
\begin{gathered} \\ \large\implies{ \boxed{\bf Solution=C.F. + P.I.}} \\ \end{gathered}
⟹
Solution=C.F.+P.I.
\begin{gathered} \\ \: \: \because\bf \: \:Here \: \:P.I. = 0\\ \end{gathered}
∵HereP.I.=0
\begin{gathered} \\ \: \: \therefore \: \: \large { \boxed{\bf \:Solution=C.F.}}\\ \end{gathered}
∴
Solution=C.F.
• Now let's find C.F. –
\begin{gathered} \\ \implies\bf (D^2-18D -77)y=0 \\ \end{gathered}
⟹(D
2
−18D−77)y=0
• Auxiliary equation –
\begin{gathered} \\ \implies\bf {m}^{2} -18m -77 = 0\\ \end{gathered}
⟹m
2
−18m−77=0
\begin{gathered} \\ \implies\bf m= \dfrac{ - ( - 18) \pm \sqrt{ {( -18)}^{2} - 4(1)(-77)} }{2(1)} \\ \end{gathered}
⟹m=
2(1)
−(−18)±
(−18)
2
−4(1)(−77)
\begin{gathered} \\ \implies\bf m= \dfrac{18 \pm \sqrt{324 + 308} }{2} \\ \end{gathered}
⟹m=
2
18±
324+308
\begin{gathered} \\ \implies\bf m= \dfrac{18 \pm \sqrt{632} }{2} \\ \end{gathered}
⟹m=
2
18±
632
\begin{gathered} \\ \implies\bf m= \dfrac{18 \pm 2\sqrt{158} }{2} \\ \end{gathered}
⟹m=
2
18±2
158
\begin{gathered} \\ \implies \large{ \boxed{\bf m=9 \pm \sqrt{158}}}\\ \end{gathered}
⟹
m=9±
158
\begin{gathered} \\ \implies \large{ \boxed{\bf m=9 + \sqrt{158},9-\sqrt{158}}}\\ \end{gathered}
⟹
m=9+
158
,9−
158
• Hence , C.F. –
\begin{gathered} \\ \implies \bf \: C.F. =c_{1} {e}^{(9 + \sqrt{158})}+c_{2} {e}^{(9 - \sqrt{158})}\\ \end{gathered}
⟹C.F.=c
1
e
(9+
158
)
+c
2
e
(9−
158
)
• And –
\begin{gathered} \\ \implies\large { \boxed{\bf \:Solution=c_{1} {e}^{(9 + \sqrt{158})}+c_{2} {e}^{(9 - \sqrt{158})}}}\\ \end{gathered}
⟹
Solution=c
1
e
(9+
158
)
+c
2
e
(9−
158
)