Math, asked by luckybisht450, 8 months ago

Solve (D2 – 2D + 1) y = x log x, using the method of variation parameters; where D =

Answers

Answered by amitnrw
3

Given :   (D² - 2D + 1)y = x log x    

To find : solve for y

Solution:

(D² - 2D + 1)y = x log x

=> y'' - 2y' + y = x log x

let say log x = t   => x =  e^{t}

dx =    e^{t}  dt

y'' - 2y' + y =   t . e^{t}

=> (y''  - 2y'  + y)  e^{-t}  = t

=> (y''  - y'    - y'  + y) e^{-t}  = t

=> (y''  - y')e^{-t} - (y'  - y)e^{-t} = t

=>  (y'e^{-t})'   -  (y e^{-t} )'  = t

integrating both sides

 (ye^{-t} )' =  t²/2  + C

integrating again

 y e^{-t}  =  t³/6  + Ct + D

=> y =   e^{t} ( t³/6  + Ct + D )

y =    x  ( (log x)³/6  + Clog(x) + D )

Learn more:

Integration of x²×sec²(x³) dx - Brainly.in

https://brainly.in/question/18063473

pls don't spam...if u spam , the answer will be reported​ - Brainly.in

https://brainly.in/question/17519995

Similar questions