Math, asked by Uday1819, 10 months ago

Solve (D2
– 2D + 1) y = x log x, using the method of variation parameters; where D = ௗ
ௗ௫

Answers

Answered by amitnrw
0

Given :  (D² - 2D + 1)y = x log x

To find : solve for y

Solution:

(D² - 2D + 1)y = x log x

=> y'' - 2y' + y = x log x

let say log x = t   => x =  e^{t}

dx =     e^{t}dt

y'' - 2y' + y =   t .  e^{t}

=> (y''  - 2y'  + y)e^{-t}   = t

=> (y''  - y'    - y'  + y)e^{-t}   = t

=> (y''  - y')e^{-t}   - (y'  - y) e^{-t}  = t

=>  (y'e^{-t} )'   -  (y e^{-t})' = t

integrating both sides

(ye^{-t} )' =  t²/2  + C

integrating again

ye^{-t}  =  t³/6  + Ct + D

=> y =   e^{t}  ( t³/6  + Ct + D )

Substitute x =  e^{t}   and log x = t

y =    x  ( (log x)³/6  + Clog(x) + D )

Learn more:

Integration of x²×sec²(x³) dx - Brainly.in

brainly.in/question/18063473

pls don't spam...if u spam , the answer will be reported​ - Brainly.in

brainly.in/question/17519995

https://brainly.in/question/19215108

Similar questions