solve ( D2 +4)y = 2 tanx : x > 0 , D = d/dx
Answers
Answered by
1
Answer:
We have,
dx
dy
+ytan x=sin x
Comparing with, standard first order linear differential equation
dx
dy
+Py=Q
We get P=tanx and Q=sinx
Thus, integrating factor. I.F=e
∫Pdx
=e
∫tanxdx
=e
lnsecx
=secx
Therefore solution is given by,
y(I.F.)=∫Q(I.F)dx+C
⇒y(secx)=∫secxsinxdx
⇒(secx)y=∫tanxdx+C
⇒(secx)y=ln∣secx∣+C
⇒y=cosxln∣secx∣+Ccosx
Similar questions