solve (D²+4) y = Sec 2x
Answers
Answer:
How do I solve (D^2 + 4)y = tan2x?
Where can you find data about materials online?
Notice, C.F. (complementary function) & P.I. (particular integral) of second order linear differential equation: (D2+4)y=tan2x=f(x) is given as
D2+4=0⟹D=±2i
C.F.=C1cos2x+C2sin2x≡C1u(x)+C2v(x)
P.I.=Acos2x+Bsin2x
Where,
A=−∫f(x)v(x) dxu(x)ddxv(x)−v(x)ddxu(x)
=−∫tan2xsin2x dxcos2xddx(sin2x)−sin2xddx(cos2x)
=−∫sin22xsec2x dxcos2x(2cos2x)−sin2x(−2sin2x)
=−12∫(1−cos22x)sec2x dx
=−12∫(sec2x−cos2x)dx
=−12(12ln(sec2x+tan2x)−sin2x2)
=−14(ln(sec2x+tan2x)−sin2x)
B=∫f(x)u(x) dxu(x)ddxv(x)−v(x)ddxu(x)
=∫tan2xcos2x dxcos2xddx(sin2x)−sin2xddx(cos2x)
=∫sin2x dxcos2x(2cos2x)−sin2x(−2sin2x)
=12∫sin2x dx
=12(−cos2x2)
=−cos2x4
setting the values of A & B in above P.I. we get complete solution of given differential equation as follows
y=C.F.+P.I.
y=C1cos2x+C2sin2x−14(ln(sec2x+tan2x)−sin2x)cos2x−cos2x4sin2x
y=C1cos2x+C2sin2x−cos2x4ln(sec2x+tan2x)
Step-by-step explanation:
Hope it helps you.
Thank you.