Math, asked by eswarveerarpu, 3 months ago

Solve (D2 - 4D + 4) y = x2 sin x + e2x + 3 ​

Answers

Answered by seemagupta477428
1

Answer:

5 is correct answer

Step-by-step explanation:

Mark as brainlist

Answered by brokendreams
7

The solution of the given differential equation is y = (C_1 + C_2 x)e^{2x}+ \frac{1}{625} [(220x+224)cosx + (40x + 33)sinx] + \frac{x^{2} }{2}  e^{2x}+ \frac{3}{4}

Step-by-step Explanation:

Given: Differential Equation (D^2 - 4D + 4) y = x^2 sin x + e^{2x} + 3

To Find: Solution of the given differential equation

Solution:

  • Finding Complementary Factor

Given the differential equation (D^2 - 4D + 4) y = x^2 sin x + e^{2x} + 3 such that consider m^2 - 4m + 4 = 0. Therefore, \Rightarrow m = 2, 2

For real and equal roots, C.F. is (C_1 + C_2 x)e^{mx}

Therefore, the Complementary Factor of the differential equation is

y_{_{C.F.}} = (C_1 + C_2 x)e^{2x}

  • Finding Particular Integral

For the given differential equation (D^2 - 4D + 4) y = x^2 sin x + e^{2x} + 3, consider the following,

y = \frac{1}{(D^2 - 4D + 4)}  (x^2 sin x + e^{2x} + 3)

\Rightarrow y = \frac{1}{(D^2 - 4D + 4)}  x^2 sin x +  \frac{1}{(D^2 - 4D + 4)}  e^{2x} +  \frac{1}{(D^2 - 4D + 4)}  3

Now, let P.I. (1) = \frac{1}{(D^2 - 4D + 4)}  x^2 sin x

\Rightarrow P.I. (1) = \text{imaginary part of} \frac{1}{(D^2 - 4D + 4)}  x^2 e^{ix}

\Rightarrow P.I. (1) = \text{I.P.} e^{ix} \frac{1}{(D+i)^2 - 4(D+i) + 4}  x^2 \ \ \Big[\because \frac{1}{f(D)} e^{ax} \phi(x)  = e^{ax} \frac{1}{f(D+a)} \phi(x) \Big]

\Rightarrow P.I. (1) = \text{I.P.} e^{ix} \frac{1}{D^2 - 2D(i-2) + 4i +3}  x^2

\Rightarrow P.I. (1) = \text{I.P.} \frac{e^{ix}}{D^{2}}  \Big[{1 + (\frac{2(i-2)}{D}  + \frac{4i}{D^2} + \frac{3}{D^2}) \Big]^{-1}  x^2 \ \ \Big[ \because \frac{1}{f(D)} x^n = [f(D)]^{-1} x^n \Big]

Solving the above expression by binomial expansion and extracting the imaginary part, we get;

\Rightarrow P.I. (1) = \frac{1}{625} [(220x+224)cosx + (40x + 33)sinx]

Now, let P.I. (2) = \frac{1}{(D^2 - 4D + 4)}  e^{2x}

\Rightarrow P.I. (2) = x^{2} \frac{1}{2}  e^{2x} \Big[ \because \frac{1}{f(D) e^{ax}} = x^{2} \frac{1}{f''(a) } e^{ax} \ \text{if} \ f(a) = 0 \ \& \ f'(a) = 0   \Big]

\Rightarrow P.I. (2) = \frac{x^{2} }{2}  e^{2x}

And, let P.I. (3) = \frac{1}{(D^2 - 4D + 4)}  3 such that,

\Rightarrow P.I. (3) = \frac{1}{(D^2 - 4D + 4)}  3e^{0x}

\Rightarrow P.I. (3) = \frac{1}{((0)^2 - 4(0) + 4)}  3e^{0x} = \frac{3}{4}

\Rightarrow P.I. (3) = \frac{3}{4}

Therefore, the Particular Integral is

y_{_{P.I.}} = P.I. (1) + P.I. (2) + P.I. (3)

\Rightarrow y_{_{P.I.}} = \frac{1}{625} [(220x+224)cosx + (40x + 33)sinx] + \frac{x^{2} }{2}  e^{2x}+ \frac{3}{4}

  • The complete solution

The complete solution is y = y_{_{C.F.}} + y_{_{P.I.}}

\Rightarrow y = (C_1 + C_2 x)e^{2x}+ \frac{1}{625} [(220x+224)cosx + (40x + 33)sinx] + \frac{x^{2} }{2}  e^{2x}+ \frac{3}{4}

Hence, the solution of the given differential equation is y = (C_1 + C_2 x)e^{2x}+ \frac{1}{625} [(220x+224)cosx + (40x + 33)sinx] + \frac{x^{2} }{2}  e^{2x}+ \frac{3}{4}

Similar questions