Math, asked by ambrosazik46, 8 months ago

Solve (D3+3D2+3D+1)y = 5​

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\mathsf{(D^3+3D^2+3D+1)y=5}

\underline{\textsf{To find:}}

\textsf{The general solution of the differential equation}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{(D^3+3D^2+3D+1)y=5}

\mathsf{m^3+3m^2+3m+1=0}

\mathsf{(m+1)^3=0}

\mathsf{m=-1,-1-1}

\textsf{Complementary function is}

\mathsf{(Ax^2+Bx+C)e^{(-1)x}}

\textsf{Particular integral}

\mathsf{=\dfrac{5}{D^3+3D^2+3D+1}}

\mathsf{=\dfrac{5\,e^{0x}}{D^3+3D^2+3D+1}}

\mathsf{=\dfrac{5\,e^{0x}}{0^3+3(0)^2+3(0)+1}\;\;\;(D\implies{-1})}

\mathsf{=5}

\therefore\textsf{The general solution is}

\mathsf{y=}\,\textsf{Complementary function + Particular integral}

\implies\boxed{\mathsf{y=(Ax^2+Bx+C)e^{-x}+5}}

Similar questions