Math, asked by diwanamrmznu, 22 days ago

solve differenciation equation
ye {}^{ \frac{x}{y} }=(x {e}^{ \frac{x}{y} } +  {y}^{2} ) \\

Answers

Answered by ItzzTwinklingStar
107

Question:

solve Diffrential equation:

  \\ \displaystyle { \bf \:{  \color{red}{ \longrightarrow ye {}^{ \frac{x}{y} } \: dx=(x {e}^{ \frac{x}{y} } + {y}^{2} ) dy }}} \\  \\

Solution:

 \\  \displaystyle { \bf \:{ \dashrightarrow  \: ye \:  {}^{ \frac{x}{y} } \: dx=(x {e}^{ \frac{x}{y} } + {y}^{2} ) dy }} \\  \\

first of all we convert this equation in terms of  \sf  \:  \frac{ dy}{dx}   or \: \frac{dx}{dy}  \\  \\

now, we get

 \\  \displaystyle { \bf \:{ \dashrightarrow   \frac{dx}{dy}  =   \: \frac{(x {e}^{ \frac{x}{y} } +  {{y}^{2} ) }}{\: ye \:  {}^{ \frac{x}{y} }} }}\\  \\

 \\  \displaystyle { \bf \:{ \dashrightarrow   \frac{dx}{dy}  =    \frac{x}{y} + ye  ^{\frac{ - x}{y} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -(i) }}}\\  \\

now by putting  \sf  \frac{x}{y}  = twe get,

 \\  \sf \dashrightarrow \: x = y \: t \\  \\

now,

  \sf \dashrightarrow \: \frac {dx}{dy} = t + y  \: \frac{dt}{dy} \\  \\

Substituting the value of dx / dy from equation 1

\\  \sf \dashrightarrow  t+ y e ^{-t} = t + y \frac{dt}{dy} \\  \\

\\  \sf \dashrightarrow  dy = e^{t}  dt \\  \\

now integrating by both side ,

\\  \sf \dashrightarrow  \int dy = \int e^{t}  dt \\  \\

\\{\dashrightarrow{\underline{\boxed  {\bf \:{  \color{blue} y = e^{t}  +c}}}}}\pink\bigstar \\  \\

Answered by MuskanJoshi14
1

Step-by-step explanation:

Question:

solve Diffrential equation:

  \\ \displaystyle { \bf \:{  \color{red}{ \longrightarrow ye {}^{ \frac{x}{y} } \: dx=(x {e}^{ \frac{x}{y} } + {y}^{2} ) dy }}} \\  \\

Solution:

 \\  \displaystyle { \bf \:{ \dashrightarrow  \: ye \:  {}^{ \frac{x}{y} } \: dx=(x {e}^{ \frac{x}{y} } + {y}^{2} ) dy }} \\  \\

first of all we convert this equation in terms of  \sf  \:  \frac{ dy}{dx}   or \: \frac{dx}{dy}  \\  \\

now, we get

 \\  \displaystyle { \bf \:{ \dashrightarrow   \frac{dx}{dy}  =   \: \frac{(x {e}^{ \frac{x}{y} } +  {{y}^{2} ) }}{\: ye \:  {}^{ \frac{x}{y} }} }}\\  \\

 \\  \displaystyle { \bf \:{ \dashrightarrow   \frac{dx}{dy}  =    \frac{x}{y} + ye  ^{\frac{ - x}{y} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -(i) }}}\\  \\

now by putting  \sf  \frac{x}{y}  = twe get,

 \\  \sf \dashrightarrow \: x = y \: t \\  \\

now,

  \sf \dashrightarrow \: \frac {dx}{dy} = t + y  \: \frac{dt}{dy} \\  \\

Substituting the value of dx / dy from equation 1

\\  \sf \dashrightarrow  t+ y e ^{-t} = t + y \frac{dt}{dy} \\  \\

\\  \sf \dashrightarrow  dy = e^{t}  dt \\  \\

now integrating by both side ,

\\  \sf \dashrightarrow  \int dy = \int e^{t}  dt \\  \\

\\{\dashrightarrow{\underline{\boxed  {\bf \:{  \color{blue} y = e^{t}  +c}}}}}\pink\bigstar \\  \\

Similar questions