Math, asked by vinaykumarcherukuri8, 2 months ago

Solve Differential equation
(1+2xycosx²-2xy)dx+(sinx²-x²)dy=0​

Answers

Answered by Avishkar8353
0

Step-by-step explanation:

1+2xycosx

2

−2xy)dx+(sinx

2

−x

2

)dy=0

\left(1+2xy\cos \left(x^2\right)-2xy\right)dx+\left(\sin \left(x^2\right)-x^2\right)dy=0(1+2xycos(x

2

)−2xy)dx+(sin(x

2

)−x

2

)dy=0

First order linear Ordinary Differential Equation

\mathrm{A\:first\:order\:linear\:ODE\:has\:the\:form\:of\:}y'\left(x\right)+p\left(x\right)y=q\left(x\right)AfirstorderlinearODEhastheformofy

(x)+p(x)y=q(x)

Let y be the dependent variable, Divide by dx:

1+2xy\cos \left(x^2\right)-2xy+\left(\sin \left(x^2\right)-x^2\right)\frac{dy}{dx}=01+2xycos(x

2

)−2xy+(sin(x

2

)−x

2

)

dx

dy

=0

\mathrm{Substitute\quad }\frac{dy}{dx}\mathrm{\:with\:}y'Substitute

dx

dy

withy

1+2xy\cos \left(x^2\right)-2xy+\left(\sin \left(x^2\right)-x^2\right)y'\:=01+2xycos(x

2

)−2xy+(sin(x

2

)−x

2

)y

=0

We rewrite in the form of a first order linear ODE

y'\:+\frac{2x\left(\cos \left(x^2\right)-1\right)}{-x^2+\sin \left(x^2\right)}y=-\frac{1}{\sin \left(x^2\right)-x^2}y

+

−x

2

+sin(x

2

)

2x(cos(x

2

)−1)

y=−

sin(x

2

)−x

2

1

We find integration factor: \mu = -x^2 + \sin \left(x^2\right)μ=−x

2

+sin(x

2

)

We put the equation in the from (\mu(x)⋅y)' = \mu(x) ⋅ q(x); ((-x^2 + sin(x^2))y)' = -1(μ(x)⋅y)

=μ(x)⋅q(x);((−x

2

+sin(x

2

))y)

=−1

We solve:

((-x^2 + sin(x^2))y)' = -1;\, y=-\frac{x}{-x^2+\sin \left(x^2\right)}+\frac{c_1}{-x^2+\sin \left(x^2\right)}((−x

2

+sin(x

2

))y)

=−1;y=−

−x

2

+sin(x

2

)

x

+

−x

2

+sin(x

2

)

c

1

y=-\frac{x}{-x^2+\sin \left(x^2\right)}+\frac{c_1}{-x^2+\sin \left(x^2\right)}y=−

−x

2

+sin(x

2

)

x

+

−x

2

+sin(x

2

)

c

1

Similar questions