Math, asked by lakshmimamathahs, 2 months ago

solve differential equation 3*e^x*tany dx+(1-e^x)( sec)^2 y dy=0​

Answers

Answered by harshtanwar1385
0

Answer:

jxjsjdcjjajsjxkakcckksw

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\: {3e}^{x} \: tany \: dx + (1 - {e}^{x}) \:  {sec}^{2}y \: dy = 0

can be rewritten as

\rm :\longmapsto\: {3e}^{x} \: tany \: dx \:   =   - \: (1 - {e}^{x}) \:  {sec}^{2}y \: dy

\rm :\longmapsto\: {3e}^{x} \: tany \: dx \:   =   \: ({e}^{x} - 1) \:  {sec}^{2}y \: dy

On separate the variables, we get

\rm :\longmapsto\:\dfrac{3{e}^{x}}{{e}^{x} - 1} \: dx \:  =  \: \dfrac{ {sec}^{2}y }{tany} \: dy

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int\tt\dfrac{3{e}^{x}}{{e}^{x} - 1} \: dx \:  = \displaystyle\int\tt \: \dfrac{ {sec}^{2}y }{tany} \: dy

\rm :\longmapsto\:3\displaystyle\int\tt\dfrac{{e}^{x}}{{e}^{x} - 1} \: dx \:  = \displaystyle\int\tt \: \dfrac{ {sec}^{2}y }{tany} \: dy

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \purple{\boxed{\displaystyle\int\tt \: \dfrac{f'(x)}{f(x)}dx \:  =  \:  log(f(x)) + c}}

So, using this identity, we get

\rm :\longmapsto\:3 log({e}^{x} - 1)  =  log(tany) +  log(c)

\rm :\longmapsto\: log({e}^{x} - 1)^{3}   =  log(c \: tany)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:log(xy) = logx + logy \bigg \}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  log( {x}^{y} )  = y log(x) \bigg \}}

\rm :\longmapsto\: ({e}^{x} - 1)^{3}   =  c \: tany

Hence,

Solution of differential equation

\bf :\longmapsto\: {3e}^{x} \: tany \: dx + (1 - {e}^{x}) \:  {sec}^{2}y \: dy = 0

is

\bf :\longmapsto\: ({e}^{x} - 1)^{3}   =  c \: tany

Additional Information :-

The solution of Homogeneous differential equation

\rm :\longmapsto\:\dfrac{dy}{dx} = f\bigg(\dfrac{y}{x} \bigg) \: is \: given \: as

Step :- 1

\rm :\longmapsto\:Let \: y \:  =  \: vx

Step :- 2

\rm :\longmapsto\:\: \dfrac{d}{dx}y \:  =  \dfrac{d}{dx}\: vx

\rm :\longmapsto\:\: \dfrac{dy}{dx} \:  =  v\dfrac{d}{dx}\:x \:  + \: x\dfrac{d}{dx}v

\rm :\longmapsto\:\: \dfrac{dy}{dx} \:  =  v \:  + \: x\dfrac{dv}{dx}

Thus,

Given differential equation reduced to

\rm :\longmapsto\:\: \  v \:  + \: x\dfrac{dv}{dx} = f(v)

and solved by variable separation method.

Similar questions