Math, asked by lakshmimamathahs, 3 months ago

solve differential equation dy/dx+x*y=x*y^3​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} + xy =  {xy}^{3}

 \red{\rm :\longmapsto\:Divide \: both \: sides \: by \:  {y}^{3}}

\rm :\longmapsto\:\dfrac{1}{ {y}^{3} }\dfrac{dy}{dx}  + \dfrac{x}{ {y}^{2} }  = x -  -  - (1)

 \red{\rm :\longmapsto\:Let \:  \dfrac{1}{ {y}^{2} } = t}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto \:  \dfrac{ - 2}{ {y}^{3} } \dfrac{dy}{dx}= \dfrac{dt}{dx}}

 \red{\rm :\longmapsto \:  \dfrac{1}{ {y}^{3} } \dfrac{dy}{dx}=  \dfrac{ - 1}{2} \dfrac{dt}{dx}}

So, equation (1) can be rewritten as

\rm :\longmapsto\:\dfrac{ - 1}{2}\dfrac{dt}{dx}  +tx  = x

\rm :\longmapsto\:\dfrac{dt}{dx}  - 2tx  =  - 2x

Its a linear differential equation,

On comparing with

 \red{\rm :\longmapsto\:\dfrac{dt}{dx} + pt = q \:  \: where \: p \: and \: q \:  \in \: f(x)}

we get

\rm :\longmapsto\:p =  - 2x

\rm :\longmapsto\:q =  - 2x

Now,

Integrating factor, is

\rm :\longmapsto\:IF \:  =  \:  {e} \: ^{\displaystyle\int\tt \: p \: dx}

\rm :\longmapsto\:IF \:  =  \:  {e} \: ^{\displaystyle\int\tt \:  - 2x \: dx}

\rm :\longmapsto\:IF \:  =  \:  {e} \: ^{ -  {x}^{2} }

Solution of differential equation is

\rm :\longmapsto\:t \times IF = \displaystyle\int\tt \: (q \times IF) \: dx

\rm :\longmapsto\:t \times  {e}^{ -  {x}^{2} }  = \displaystyle\int\tt \: ( - 2x \times  {e}^{ -  {x}^{2} } ) \: dx

\rm :\longmapsto\:t \times  {e}^{ -  {x}^{2} }  =  {e}^{ -  {x}^{2} } + c

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \displaystyle\int\tt {e}^{f(x)} \: f'(x) \: dx =  {e}^{f(x)}  + c \bigg \}}

\rm :\implies\:t = 1 +  c {e}^{{x}^{2} }

On substituting the value of t, we get

\rm :\implies\:\dfrac{1}{ {y}^{2} } = 1 +  c {e}^{{x}^{2} }

\rm :\longmapsto\: {y}^{2} +  {cy}^{2} {e}^{ {x}^{2} }  = 1

Similar questions