Math, asked by lkjhgjkk, 1 month ago

solve differential equations (2x+y-1)dy = (x-2y+5)dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

(2x + y - 1)dy = (x - 2y + 5)dx \\

 \implies \frac{dy}{dx}  =  \frac{(x - 2y + 5)}{(2x + y - 1)} \\

 Let x= u + h \:\:and \:\:y= v + k ....(where \:\: h \:\: and \:\: k are constants

 \implies \frac{dv}{du}  =  \frac{((u + h) - 2(v + k)+ 5)}{(2(u + h)+( v + k) - 1)} \\

 \implies \frac{dv}{du}  =  \frac{(u- 2v + h  -  2k+ 5)}{(2u + v +2 h+ k - 1)} \\

Now, putting

h - 2k + 5 = 0 \:  \: and \:  \: 2h + k - 1 = 0 \\

h =   - \frac{3}{5}  \:  \: and \:  \: k =  \frac{11}{5}  \\

Now, the required differential equation becomes,

 \implies \frac{dv}{du}  =  \frac{(u- 2v )}{(2u + v )} \\

 \implies (2u + v)dv =  (u- 2v )du \\

 \implies 2udv + vdv =  udu- 2v du \\

 \implies 2udv  + 2vdu =  udu- v dv \\

 \implies 2(udv  + vdu )=  udu- v dv \\

 \implies 2d(uv) =  udu- v dv \\

Integrating both sides

 \implies  \int2d(uv) =   \int \: udu- \int v dv \\

 \implies  2uv =  u- v  +  C \\

 \implies  2(x -  \frac{3}{5})( y +  \frac{11}{5} ) =  x -  \frac{ 3}{5} - y -  \frac{11}{5} + C \\

Similar questions