Math, asked by Anonymous, 1 year ago

Solve!!

Differential equations.


Using integrations!!

Attachments:

locomaniac: Heyyyy

Answers

Answered by siddhartharao77
7

The answer is explained in the attachment.

Hope it helps!
Attachments:

siddhartharao77: :-)
Answered by rakeshmohata
5
Hope u like my process
=====================
The differential Equations in the form of

 \frac{dy}{dx}  + py = q.....(1)
can be solved into general solutions by following process :-

1) find out the integration factor.

=> Here integration factor refers to the value that comes after solving:-

 =  >  \it \:  {e}^{ \int \: p \: dx}
2) multiply Integrating factor on both sides.

3) integrate both sides to get solution.
_______________________________

xi)

 =  >  \it \: (1 +  {x}^{2} ) \frac{dy}{dx}  + y =  \tan ^{ - 1} (x)  \\  \\  =  > \bf  \frac{dy}{dx}  + ( \frac{1}{1 +  {x}^{2} } )y =  \frac{ \tan {}^{ - 1} (x) }{1 +  {x}^{2} }

Clearly, here

 =  > p =  \frac{1}{1 +  {x}^{2} }  \\  \\  \bf \underline{ so \:  \: integrating \:  \: factor \:  \: is} \\  \\  =  >  {e}^{ \int \: p \: dx}  =  {e}^{ \int \:  \frac{dx}{1 +  {x}^{2} } }  =  {e}^{ \tan {}^{ - 1} (x) }

Thus,

Multiplying I. F. both sides we get,
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-===

 =  >  {e}^{ \tan {}^{ - 1} (x) }  \frac{dy}{dx}  +  \frac{ {e}^{ \tan {}^{ - 1} (x) } }{(1 +  {x}^{2}) } y =   \frac{ \tan {}^{ - 1} (x)  {e}^{ \tan {}^{ - 1} (x) } }{(1 +  {x}^{2} )}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \: solving \:  \: we \:  \: get \\  \\  =  >  \int \: d(y {e}^{ \tan {}^{ - 1} ( x ) } ) =  \int \frac{ \tan {}^{ - 1} (x) {e}^{ \tan {}^{ - } (x) }  }{1 +  {x}^{2} } dx \\  \\  \bf  \:  \:  \: let \:  \:  \tan {}^{ - 1} (x)  = z \\  \\ so.. \:  \:  \:  \it \frac{dx}{1 +  {x}^{2} }  = dz \\  \\  \bf \:  \: now \\  \\  =  > y. {e}^{ z }  =  \int \: z. {e}^{z}dz  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = z \int \:  {e}^{z} dz -  \int \frac{dz}{dz} ( \int {e}^{z}d z)dz \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  {e}^{z} (z - 1) + c \\  \\  \\  =  >  \it \: y = z - 1 + c {e}^{ - z}  \\  \\  =  >   \underline{\bf \: y =  \tan {}^{ - 1} (x)  - 1 + c {e}^{ -  \tan {}^{ - 1} (x) } } \\  \\ this \:  \: is \:  \: your \:  \: required \:  \: general \:  \: solution \\  \\

______________________________
xii)

 =  > x log(x)   \frac{dy}{dx}  + y = 2 log(x)  \\  \\  =  >  \bf \:  \frac{dy}{dx}  + ( \frac{1}{x log(x) } )y =  \frac{2}{x}  \\  \\

Thus clearly..

 =  > p =  \frac{1}{x log(x) }  \\  \\  \bf \:  \underline{taking \:  \: out \:  \: integration \:  \: factor} \\  \\  =  >  {e}^{ \int \:  p\: dx}  =  {e}^{ \int \frac{dx}{x log(x) } } =  {e}^{ \int \frac{ \frac{1}{x}dx }{ log(x) } }   \\  \\  =   \it \: {e}^{ log( log(x) ) }   =  \bf log(x)  \\  \\   \bf \: now \:  \:  \\  \\   \underline{multipying  \:  \: integrating \:  \: factor\:  \: in \:  \: both \:  \: sides } \\  \\  =  >   \it \: log(x)  \frac{dy}{dx}  +  \frac{1}{x} .y =  \frac{2 log(x) }{x}  \\  \\  =  >  \int \: d(y. log(x) ) = 2 \int \frac{ log(x) }{x} dx \\  \\    \bf \: let \:  \:  log(x)  = z \\  \\ so... \frac{1}{x} dx = dx \\  \\  \bf  \:  \:  \:  \:  \:  \:  \: \underline{now} \\  \\  =  > \it y \times z = 2 \int \: zdz \\  \\  =  > y \times z = 2 \times  \frac{ {z}^{2} }{2}  + c \\  \\  =  > y = z +  \frac{c}{z}  \\  \\  =  >  \bf \:  \underline{y =  log(x) +  \frac{c}{ log(x) }  }
This is the required general solution.
__________________________
Hope this is ur required answer

Proud to help you
Similar questions