Math, asked by Anonymous, 4 months ago

Solve

Don't spam ❌



Please iska koi answer de do yrr​

Attachments:

Answers

Answered by BrainlyIAS
23

To Prove :

\dagger\ \; \sf \red{\dfrac{sin\ \theta - 2\ sin^3\theta}{2\ cos^3\theta - cos\ \theta}= tan\ \theta}

Proof :

LHS

\longrightarrow \sf \dfrac{sin\ \theta - 2\ sin^3 \theta }{2\ cos^3 \theta - cos\ \theta}

\longrightarrow \sf \dfrac{sin\ \theta(1 - 2\ sin^2 \theta )}{cos\ \theta (2\ cos^2  \theta - 1)}

\bullet\ \; \sf \orange{2\ cos^2x=1+cos\ 2x}

\bullet\ \; \sf \green{2\ sin^2x=1-cos\ 2x}

\longrightarrow \sf \dfrac{sin\ \theta(cos\ 2\theta )}{cos\ \theta (cos\ 2\theta)}

\longrightarrow \sf \dfrac{sin\ \theta}{cos\ \theta}

\longrightarrow\  \sf tan\ \theta

RHS

Answered by Anonymous
38

Given :  \sf {\bf{ \dfrac{\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }  = \tan \theta }}\\

To Prove :  \sf {\bf{ \dfrac{\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }  = \tan \theta }}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀  \sf {\bf{ \star \dfrac{\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }  = \tan \theta }}\\

Here ,

⠀⠀⠀⠀⠀⠀  \sf {\bf{ \implies L.H.S \:=\:\dfrac{\:\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }   }}\\

⠀⠀⠀⠀⠀⠀  \sf {\bf{ \implies R.H.S \:=\:\tan \theta     }}\\

⠀⠀⠀⠀⠀\sf{\underline {\bf{ \star { Now \: By \:Solving \;L.H.S \: \::}}}}\\

⠀⠀⠀  \sf { \implies{ L.H.S\:=\:\dfrac{ \:\:\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }   }}\\

⠀⠀⠀  \sf { \implies \dfrac{\:\sin \theta - 2 \sin^{3} \theta }{2\cos^{3} \theta - \cos\theta }   }\\

By taking \sin \theta as common in numerator :

⠀⠀⠀  \sf { \implies {\dfrac{\:\purple {\sin \theta - 2 \sin^{3} \theta} }{2\cos^{3} \theta - \cos\theta }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\purple {\sin \theta(1  - 2 \sin^{2} \theta)} }{2\cos^{3} \theta - \cos\theta }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 \sin^{2} \theta) }{2\cos^{3} \theta - \cos\theta }   }}\\

By taking \cos \theta as common in denominator :

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 \sin^{2} \theta) }{\purple {2\cos^{3} \theta - \cos\theta} }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 \sin^{2} \theta) }{\purple {\cos \theta (2\cos^{2}\theta - 1)} }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 \sin^{2} \theta) } {\cos \theta (2\cos^{2}\theta - 1) }   }}\\

As , We know that ,

1 - \cos ^{2} \theta =\sin^{2} \theta

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 \sin^{2} \theta) } {\cos \theta (2\cos^{2}\theta - 1) }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2(1 -  \cos^{2} \theta)) } {\cos \theta (2\cos^{2}\theta - 1) }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(1  - 2 + 2   \cos^{2} \theta) } {\cos \theta (2\cos^{2}\theta - 1) }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta(   2\cos^{2} \theta- 1) } {\cos \theta (2\cos^{2}\theta - 1) }   }}\\

⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta\cancel{(   2\cos^{2} \theta- 1)} } {\cos \theta \cancel{(2\cos^{2}\theta - 1) }}   }}\\

⠀⠀⠀⠀  \sf { \implies {\dfrac{\:\sin \theta } {\cos \theta  }   }}\\

As , We know that ,

\dfrac{\sin\theta}{\cos\theta} = \tan \theta

⠀⠀⠀⠀  \underline {\boxed{\pink{ \sf {L.H.S =  \tan \theta  }}}}\\

Therefore,

⠀⠀⠀⠀  \sf { \implies {L.H.S = R.H.S  }}\\

⠀⠀⠀⠀  \dag\:\:\sf { \bf {Hence, \:Proved \:! }}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions