Math, asked by roshni6638, 6 months ago

solve
dx/dt-3x-6y=t^2,
dy/dt+dx/dt-3y=e^t​

Answers

Answered by gbisht404
0

Step-by-step explanation:

Solution:

Given equations as in question =>

\frac{dx}{dt} + 2x -3y = t

dt

dx

+2x−3y=t

\frac{dy}{dt} - 3x + 2y = e^{2t}

dt

dy

−3x+2y=e

2t

Let D = d/dt

Then,

(D + 2)x -3y = t(D+2)x−3y=t [Equation 1]

-3x + (D + 2)y = e^{2t}−3x+(D+2)y=e

2t

[Equation 2]

Now, we have to eliminate y.

Multiply by (D + 2) on Equation 1

\begin{gathered}(D + 2)^{2} x - 3(D + 2)y = (D + 2)t \\(D + 2)^{2} x - 3(D + 2)y = Dt + 2t\\(D + 2)^{2} x - 3(D + 2)y = \frac{d}{dt} (t) + 2t\\\end{gathered}

(D+2)

2

x−3(D+2)y=(D+2)t

(D+2)

2

x−3(D+2)y=Dt+2t

(D+2)

2

x−3(D+2)y=

dt

d

(t)+2t

(D + 2)^{2} x + 3(D + 2)y = 1 + 2t(D+2)

2

x+3(D+2)y=1+2t [Equation 3]

Multiply Equation 2 with 3

-9x + 3(D + 2)y = 3e^{2t}−9x+3(D+2)y=3e

2t

[Equation 4]

Add Equation 3 and Equation 4

[(D + 2)^{2} x - 3(D + 2)y] + [-9x + 3(D + 2)y] = 1 + 2t + 3e^{2t}[(D+2)

2

x−3(D+2)y]+[−9x+3(D+2)y]=1+2t+3e

2t

(D + 2)^{2} x - 3(D + 2)y -9x + 3(D + 2)y = 1 + 2t + 3e^{2t}(D+2)

2

x−3(D+2)y−9x+3(D+2)y=1+2t+3e

2t

(D + 2)^{2} x -9x = 1 + 2t + 3e^{2t}(D+2)

2

x−9x=1+2t+3e

2t

(D^{2} + 4D + 4 )x -9x = 1 + 2t + 3e^{2t}(D

2

+4D+4)x−9x=1+2t+3e

2t

(D^{2} + 4D + 4 - 9)x = 1 + 2t + 3e^{2t}(D

2

+4D+4−9)x=1+2t+3e

2t

(D^{2} + 4D -5)x = 1 + 2t + 3e^{2t}(D

2

+4D−5)x=1+2t+3e

2t

This differential equation is a second order linear differential equation having constant coefficients.

We need to solve (D² + 4D - 5)x = 0 for complementary function and the auxiliary equation from this is,

(Put D as m)

m² + 4m - 5 = 0 [Auxiliary Equation]

m² + 5m -m - 5 = 0

m(m + 5) -1(m + 5) = 0

(m + 5)(m - 1) = 0

Roots will be =>

m + 5 = 0 => m = -5

m - 1 = 0 => m = 1

m = -5, 1

Now, we know that the roots are real and different.

So,

Complementary \ Function(C.F) = C_{1} e^{-5t} + C_{2} e^{t}Complementary Function(C.F)=C

1

e

−5t

+C

2

e

t

\begin{gathered}Particular \ Integral(1) [P.I(1)] = > \\ \frac{1}{D^{2} + 4D - 5 } (1 + 2t)\\\end{gathered}

Particular Integral(1)[P.I(1)]=>

D

2

+4D−5

1

(1+2t)

\frac{-1}{5} \frac{1}{[1 - \frac{(4D + D^{2}) }{5}] } (1 + 2t)

5

−1

[1−

5

(4D+D

2

)

]

1

(1+2t)

\frac{-1}{5} [ 1 - \frac{(4D + D^{2}) }{5}]^{-1} (1 + 2t)

5

−1

[1−

5

(4D+D

2

)

]

−1

(1+2t)

\frac{-1}{5} [ 1 + \frac{(4D + D^{2}) }{5}] (1 + 2t)

5

−1

[1+

5

(4D+D

2

)

](1+2t)

\frac{-1}{5} [ 1 + \frac{4D }{5}] (1 + 2t)

5

−1

[1+

5

4D

](1+2t)

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}D(1 + 2t)]

5

−1

[1+2t+

5

4

D(1+2t)]

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}\frac{d}{dt} (1 + 2t)]

5

−1

[1+2t+

5

4

dt

d

(1+2t)]

\frac{-1}{5} [ 1 + 2t + \frac{4 }{5}*2]

5

−1

[1+2t+

5

4

∗2]

\frac{-1}{5} [ 2t + \frac{13}{5}]

5

−1

[2t+

5

13

]

\begin{gathered}Particular \ Integral(2) [P.I(2)] = > \\ \frac{1}{D^{2} + 4D - 5 } 3e^{2t} \\\end{gathered}

Particular Integral(2)[P.I(2)]=>

D

2

+4D−5

1

3e

2t

3\frac{e^{2t} }{4 + 4*2-5}3

4+4∗2−5

e

2t

\frac{3e^{2t} }{7}

7

3e

2t

x = C.F + P.I(1) + P.I(2)

x = C_{1} e^{-5t} + C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}x=C

1

e

−5t

+C

2

e

t

5

1

[2t+

5

13

]+

7

3e

2t

Now, we know Equation 1

(D + 2)x -3y = t

3y = (D + 2)x - t

3y = \frac{dx}{dt} + 2x -t3y=

dt

dx

+2x−t

Put value of x

3y = \frac{d}{dt} [C_{1} e^{-5t} + C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}] + 2[C_{1} e^{-5t} + C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}] -t3y=

dt

d

[C

1

e

−5t

+C

2

e

t

5

1

[2t+

5

13

]+

7

3e

2t

]+2[C

1

e

−5t

+C

2

e

t

5

1

[2t+

5

13

]+

7

3e

2t

]−t

3y = \frac{d}{dt} [C_{1} e^{-5t} (-5)+ C_{2} e^{t} - \frac{2}{5} + \frac{6e^{2t} }{7} + 2C_{1} e^{-5t} + 2C_{2} e^{t} - \frac{4t}{5} - \frac{26}{25} + \frac{6e^{2t} }{7} - t3y=

dt

d

[C

1

e

−5t

(−5)+C

2

e

t

5

2

+

7

6e

2t

+2C

1

e

−5t

+2C

2

e

t

5

4t

25

26

+

7

6e

2t

−t

3y = -3C_{1} e^{-5t} + 3C_{2} e^{t} - \frac{9t}{5} + \frac{12e^{2t} }{7} - \frac{36}{25}3y=−3C

1

e

−5t

+3C

2

e

t

5

9t

+

7

12e

2t

25

36

y = -C_{1} e^{-5t} + C_{2} e^{t} - \frac{3t}{5} + \frac{4e^{2t} }{7} - \frac{12}{25}y=−C

1

e

−5t

+C

2

e

t

5

3t

+

7

4e

2t

25

12

The solution is =>

x = C_{1} e^{-5t} + C_{2} e^{t} - \frac{1}{5} [ 2t + \frac{13}{5}] + \frac{3e^{2t} }{7}x=C

1

e

−5t

+C

2

e

t

5

1

[2t+

5

13

]+

7

3e

2t

y = -C_{1} e^{-5t} + C_{2} e^{t} - \frac{3t}{5} + \frac{4e^{2t} }{7} - \frac{12}{25}y=−C

1

e

−5t

+C

2

e

t

5

3t

+

7

4e

2t

25

12

Similar questions