Math, asked by sukdeo1966, 9 months ago

Solve dx(x²y³+xy)dy = 0​

Answers

Answered by dhwaniverma850
1

Answer:

ANSWER

Given,

dx

dy

(x

2

y

3

+xy)=1

dx

dy

=

x

2

y

3

+xy

1

dy

dx

=x

2

y

3

+xy

dy

dx

−xy=x

2

y

3

x

2

1

dy

dx

x

y

=y

3

substitute

x

1

=u

dy

du

=−

x

2

1

dy

dx

dy

du

−uy=y

3

dy

du

+uy=−y

3

I.F=e

∫ydy

=e

2

y

2

u×e

2

y

2

=−∫y

3

e

2

y

2

dy

=−2(

2

y

2

−1)e

2

y

2

+c

=(2−y

2

)e

2

y

2

+c

⇒x(2−y

2

)+cxe

2

y

2

=1

Answered by tarracharan
1

 \frac{d}{dy} ( {x}^{2}  {y}^{3}  + xy)  = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \\   {x}^{2}(3 {y}^{2} ) + ( \frac{dx}{dy} ) {y}^{3}  + x + y( \frac{dx}{dy} ) = 0 \\  \frac{dx}{dy} ( {y}^{3}  + y) =  - x - 3 {x}^{2}  {y}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \frac{dx}{dy}  =   - \frac{  x(3x {y}^{2} + 1) }{y( {y}^{2} + 1)  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\red{\boxed{MARK \:AS \: BRAINLIEST}}}

give thanks and follow me

Similar questions