Math, asked by iamry0208, 1 month ago

Solve dy/dx = 2x-y with initial conditions x0 = 0, y0 = 0 by taylor’s series method. Find the approximate value of y for x = 0.2 , 0.4. Compare your results with exact values​

Answers

Answered by pulakmath007
15

SOLUTION

TO SOLVE

 \displaystyle \sf{ \frac{dy}{dx} = 2x - y \:  \:  \: with \: initial \: condition \:  x_0 = 0  \: and \:   y_0 = 0 }

by Taylor's series method.

Find the approximate value of y for x = 0.2 , 0.4.

Compare your results with exact values

EVALUATION

Here the given equation is

\displaystyle \sf{ \frac{dy}{dx} = 2x - y}

Thus we get

\displaystyle \sf{y'= 2x - y}

Differentiating both sides with respect to x successively we get

\displaystyle \sf{y''= 2 - y'}

\displaystyle \sf{y''' =  - y''}

\displaystyle \sf{{y}^{iv}  = - y'''}

 \sf{We  \: now \:  use  \:  \: x_0 = 0 ,y_0 = 0}

\displaystyle \sf{y'(0) =0 - 0 =  0}

\displaystyle \sf{y''(0) = 2 - y'(0) = 2 - 0 = 2}

\displaystyle \sf{y'''(0) =  - y''(0) =  - 2}

\displaystyle \sf{ {y}^{iv}(0) =  -  y'''(0) =  2}

Putting these value in Taylor's Series we get

 \displaystyle \sf{y(x) = y(0) + xy'(0) +  \frac{ {x}^{2} }{2!}y''(0)  + \frac{ {x}^{3} }{3!}y'''(0) + \frac{ {x}^{4} }{4!} {y}^{iv} (0) + ...}

 \displaystyle \sf{ \implies \: y(x) = 0 + x.0+  \frac{ {x}^{2} }{2!}.2  + \frac{ {x}^{3} }{3!}.( - 2) + \frac{ {x}^{4} }{4!}.2 + ...}

 \displaystyle \sf{ \implies \: y(x) = {x}^{2}  - \frac{ {x}^{3} }{3}+ \frac{ {x}^{4} }{12} +  ...}

  \boxed{ \:  \: \displaystyle \sf{  \: y(x) = {x}^{2}  - \frac{ {x}^{3} }{3}+ \frac{ {x}^{4} }{12} +  ...} \:  \:  \: }

Putting x = 0.2 we get

\displaystyle \sf{  \: y(0.2) = {(0.2)}^{2}  - \frac{ {(0.2)}^{3} }{3}+ \frac{ {(0.2)}^{4} }{12} +  ...}

\displaystyle \sf{ \implies \:   \: y(0.2) = 0.04  - 0.0027 + 0.0001 +  ...}

 \displaystyle \sf{ \implies \:   \: y(0.2) = 0.0374}

 \boxed{ \:  \: \displaystyle \sf{  \:   \: y(0.2) = 0.0374} \: }

Putting x = 0.4 we get

\displaystyle \sf{  \: y(0.4) = {(0.4)}^{2}  - \frac{ {(0.4)}^{3} }{3}+ \frac{ {(0.4)}^{4} }{12} +  ...}

\displaystyle \sf{ \implies \:   \: y(0.4) = 0.16  -  0.0213 + 0.0021 +  ...}

\displaystyle \sf{ \implies \:   \: y(0.4) = 0.1408}

 \boxed{ \:  \: \displaystyle \sf{   \: y(0.4) = 0.1408} \:  \: }

VERIFICATION

The given differential equation is

\displaystyle \sf{ \frac{dy}{dx} = 2x - y}

\displaystyle \sf{ \implies \:  \frac{dy}{dx} + y = 2x }

\displaystyle \sf{ Integrating \:  Factor  =  {e}^{ \int 1.x} =  {e}^{x}  }

Multiplying both sides by Integrating Factor and on integration we get

\displaystyle \sf{  \: y. {e}^{x} =  \int \: 2x. {e}^{x} dx  }

\displaystyle \sf{ \implies \: y. {e}^{x} =2  \int \: x. {e}^{x} dx  }

\displaystyle \sf{ \implies \: y. {e}^{x} =2  ( \: x {e}^{x}  - {e}^{x} ) + c}

\displaystyle \sf{ \implies \: y =2  ( \: x  - 1 ) + c. {e}^{ - x}}

Where C is integration constant

Now y = 0 when x = 0 gives

\displaystyle \sf{ \implies \: 0 =2  ( \: 0  - 1 ) + c. {e}^{ - 0}}

\displaystyle \sf{ \implies \:c = 2}

So the solution is

 \boxed{ \:  \: \displaystyle \sf{  y (x)=2  ( \: x  - 1 ) + 2. {e}^{ - x}}   \:  \: }

Putting x = 0.2 we get

 \displaystyle \sf{  y(0.2) =2  ( \: 0.2  - 1 ) + 2. {e}^{ - 0.2}}

 \displaystyle \sf{ \implies  y(0.2) = - 1.6 + 2 \times 0.8187}

 \displaystyle \sf{ \implies  y(0.2) =0.0374}

 \boxed{ \:  \: \displaystyle \sf{  \:   \: y(0.2) = 0.0374} \: }

Putting x = 0.4 we get

 \displaystyle \sf{  y (0.4)=2  ( 0.4  - 1 ) + 2. {e}^{ - 0.4}}

 \displaystyle \sf{ \implies  y (0.4)= - 1.2 + 1.3408}

 \displaystyle \sf{   \implies \:  y(0.4) = 0.1408} \:  \:

 \boxed{ \:  \: \displaystyle \sf{   \: y(0.4) = 0.1408} \:  \: }

Hence verified

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882


amansharma264: Excellent
pulakmath007: Thank you Brother
Similar questions