Math, asked by Milon2172, 1 year ago

Solve:

dy/dx =2xy / ( x2 - y2 )

The answer given in the book is :y = C ( x2 + y2 )

Answers

Answered by sprao534
29
Please see the attachment
Attachments:
Answered by lublana
11

Answer:

y=c(x^2+y^2)

Step-by-step explanation:

We are given that

\frac{dy}{dx}=\frac{2xy}{x^2-y^2}

It is a homogeneous function equation

Substitute y=vx

\frac{dy}{dx}=v+x\frac{dv}{dx}

Then we get

v+x\frac{dv}{dx}=\frac{2x^2v}{x^2-v^2x^2}

v+x\frac{dv}{dx}=\frac{2v}{1-v^2}

x\frac{dv}{dx}=\frac{2v}{1-v^2}-v

x\frac{dv}{dx}=\frac{2v-v+v^3}{1-v^2}

x\frac{dv}{dx}=\frac{v(v^2+1)}{1-v^2}

\frac{1-v^2}{v(v^2+1)}=\frac{dx}{x}

{\frac{1}{v}-\frac{2v}{1+v^2}=\frac{dx}{x}

Integrating on both sides then we get

ln v-ln(1+v^2)=lnx+lnc

Substitute v=\frac{y}{x}

Then we get

ln\frac{y}{x}-ln(1+\frac{y^2}{x^2})=lncx

ln\frac{y}{x}\cdot\frac{x^2}{x^2+y^2}=ln cx

Cancel ln on both side

\frac{yx}{x^2+y^2}=cx

\frac{y}{x^2+y^2}=c

y=c(x^2+y^2)

Similar questions