Solve dy/dx=(4x+y+1)^2
Answers
Answered by
2
dydx=(4x+y+1)2
Use a substitution to replace the quantity squared.
Let u=(4x+y+1) and dudx=4+dydx
dudx−4=u2
dudx=(u2+4)
This is a separable ODE. Form the two integrals and solve them.
∫du(u2+4)=∫dx
x=∫du(u2+4)
The remaining integral requires a trigonometric substitution.
x=∫du(u2+4)
u=2tan(θ),du=2sec2(θ)dθ
x=∫2sec2(θ)4(tan2(θ)+1)dθ
x=∫2sec2(θ)4sec2(θ)dθ
x=∫12dθ=12θ+C
Change variables from θ back to u.
x=12tan−1(u2)+C
Then, change variables from u back to x,y.
x=12tan−1((4x+y+1)2)+C
Solve the equation for y to get the answer.
Answer
y=2tan(2x+B)−4x−1
Similar questions
Math,
1 month ago
Math,
1 month ago
Math,
1 month ago
Social Sciences,
2 months ago
Math,
2 months ago
World Languages,
10 months ago
English,
10 months ago
Math,
10 months ago