Solve: dy/dx-dx/dy=x/y-y/x
Answers
Answer:
This equation have two solutions
1. xy=c
2. y^2 - x^2 = c
Step-by-step explanation:
dy/dx-dx/dy=x/y - y/x
dy/dx-dx{1/(dy/dx) }=(x²-y²) /xy
(dy/dx)²- 1= {(x²-y²)/xy} dy/dx
(dy/dx)² - {(x²–y²) /xy} dy/dx -1=0
dy/dx=[{(x²-y²)/xy}(+Or-)√{(x²-y²)²/(xy)²+ 4}]/2
2 dy/dx={(x²-y²)/xy}(+or-)[√{(x²-y²)²-4x²y²}]/xy
2dy/dx=(x²-y²)/xy(+or-){√(x²+y²)²}/xy
2 dy/dx= (x²-y²)/xy(+or-) (x²+y²)/xy
2 dy/dx=(x²-y²)/xy + (x²+y²)/xy (using +ve value)
2dy/dx=2x²/xy
dy/dx=x/y
ydy=xdx
∫ydy=∫xdx +c₁(c₁=integrating const.)
y²/2=x²/2+c₁
y²-x²=c (c=2c₁) ……………(1)
now using -ve value
2 dy/dx =(x²-y²)xy-(x²+y²)/xy
2 dy/dx = -2 y/x
dy/y+dx/x=0
∫dy/y+∫dx/x=c₂ (c₂ =integrating const.)
ln y + ln x =ln c' ( c₂=ln c' )
ln(xy)= ln c'
xy=c ……………………………………(2)
from (1) and (2) we get the solution of given differential equation,
y²-x²= c & xy=c'
HOPE IT HELPS YOU BUDDY.