Math, asked by Nibeditaparida, 1 year ago

solve dy/dx=x-y+1/x+y-3

Answers

Answered by Pitymys
39

Given the differential equation,

 \frac{dy}{dx} =\frac{x-y+1}{x+y-3}  . Make the substitution,

 x=X+h,y=Y+k , then

 \frac{dy}{dx} =\frac{dY}{dY} =\frac{X+h-Y-k+1}{X+h+Y+k-3}\\<br />\frac{dY}{dY} =\frac{X-Y+h-k+1}{X+Y+h+k-3}

Now set

 h-k+1=0,h+k-3=0 . Solve the above 2 equations,

 h=1,k=2

The differential equation becomes,

 \frac{dY}{dX} =\frac{X-Y}{X+Y} . This is a homogenous differential equation,

Let  Y=vX , then   \frac{dY}{dX} =v+X \frac{dv}{dX}

 \frac{X-vX}{X+vX} =\frac{1-v}{1+v}

The differential equation is,

 v+X \frac{dv}{dX} =\frac{1-v}{1+v} \\<br />X \frac{dv}{dX} =\frac{1-v}{1+v} -v\\<br />X \frac{dv}{dX} =\frac{1-2v-v^2}{1+v} \\<br /> \frac{(1+v)dv}{1-2v-v^2} =\frac{dX}{X} \\<br /> \frac{(1+v)dv}{2-(1+v)^2} =\frac{dX}{X} \\

Integrating both sides,

 \int \frac{(1+v)dv}{2-(1+v)^2} =\int \frac{dX}{X} \\<br />-\frac{1}{2}\ln |2-(1+v)^2|=\n X+C\\<br />\ln |2-(1+v)^2|=-2(\n X+C)\\<br />\ln |1-2v-v^2|=-2(\n X+C)\\<br />\ln |1-2\frac{Y}{X}-(\frac{Y}{X})^2|=-2(\n X+C)\\<br />

 \ln |1-2\frac{y-2}{x-1}-(\frac{y-2}{x-1})^2|=-2(\n |x-1|+C)\\<br />\ln |(x-1)^2-2(x-1)(y-2)-(y-2)^2|-2\n |x-1|=-2(\n |x-1|+C)\\<br />\ln |(x-1)^2-2(x-1)(y-2)-(y-2)^2|=C\\<br />(x-1)^2-2(x-1)(y-2)-(y-2)^2=C\\<br />(x-1)^2-2(x-1)(y-2)-(y-2)^2=C


Nibeditaparida: tq
Answered by shaileshkadakia
8

Answer:

Step-by-step explanation:

I discoverd an error in final step of simplification. The correction is as follows.

ln | (x-1)^2 - 2(x-1)(y-2) -(y-2)^2| - 2ln|(x-1)| = -2(|(x-1) +c)|

Final answer is

(x-1)^2 -2(x-1)(y-2) - (y-2)^2 = 2ln|(x-1)| -2(x-1) + K

Similar questions