Solve dy/dx+xy=x. Differential equation.
Answers
Answered by
0
Answer:
Step-by-step explanation:
Did you get the answer to this math?
Answered by
1
Step-by-step explanation:
How can I solve dy/dx=x-y/x+y?
dydx=x−yx+y
Put,y=vx
⟹dydx=v+xdvdx
⟹v+xdvdx=1−v1+v
⟹xdvdx=1−2v−v21+v
⟹∫v+1(v+1)2−2dv=−∫1xdx
⟹12ln|(v+1)2−2|=−ln|x|+ln|c1|
⟹ln|[(v+1)2−2]|=2ln∣∣c1x∣∣
⟹x2(v2+2v−1)=C
WhereC=2ln|c1|
Since,v=yx
⟹y2+2xy−x2=CRequired General equation
OnePlus 7T.
dy/dx=x-y/x+y
Let y=vx
dy/dx=xdv/dx+v
xdv/dx+v=(x-vx) /(x+vx)
=(1-v)/(1+v)
xdv/dx=(1-v)/(1+v)-v
xdv/dx=(1-v-v-v^2)/1+v
(1+v)dv/(1–2v-v^2)=dx/x
put 1–2v-v^2=t
-2(1+v)dv=dt
-dt/2t=dx/x
Integrating both side
-1/2lnt=lnx+lnc
lnt^-1/2=lnxc
1/√t=xc
1/√1–2v-v^2)=xc
1/√1–2y/x-(y/x)^2=xc
x/√x^2–2yx-y^2=xc
√x^2-y^2–2yx=1/c
Similar questions